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ABSTRACT

In recent years, computers have been used to generate ensembles of districting plans: collections of large
numbers of electoral maps that are used to assess a proposed map in the context of valid alternatives.
Ensemble-based outlier analysis has played a central role in recent redistricting disputes, especially re-
garding partisan gerrymandering. Until now, methods for generating these ensembles have enforced dis-
tricting rules that are relatively simple to assess, such as population equality, but have not contended with
more complex ones, such as the prohibitions against racial gerrymandering and minority vote dilution
that flow from the Constitution and the Voting Rights Act (VRA). We take up the task of building en-
sembles of plans that respect those legal constraints. Rather than relying on demographic data alone,
our method uses precinct-level returns from a large collection of recent primary and general elections.
With this electoral history, we build effectiveness scores that identify districts where members of minor-
ity groups have had realistic opportunities to nominate and elect their preferred candidates. In a case
study of Texas congressional districts, we find that detailed election data is indispensable to assessing
a map’s effectiveness for minority voters. Purely demographic targets, such as demanding some specific
number of majority-minority districts, not only raise constitutional concerns but also are inadequate
proxies for empirical effectiveness. Beyond the primary task of building VRA-conscious ensembles
for comparison, we also repurpose the same algorithmic search methods to find plans that dramatically
increase minority electoral opportunities. In Texas, for example, the current enacted 36-district congres-
sional plan has perhaps 11 to 13 districts that are effective for Latino voters, Black voters, or both. We
find that better mapmaking could raise that number to at least 16 without sacrificing traditional principles
such as contiguity and compactness. This would nearly eliminate the historic underrepresentation of both
groups throughout the state.
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1. INTRODUCTION

Today, only 107 representatives in
congress—fewer than a quarter of all House

members—belong to a racial or language minority
group.1 If those groups were represented in propor-
tion to their share of the nation’s adult citizen pop-
ulation, that number would increase to 144
Representatives.2 And this sub-proportional repre-
sentation is not confined to Congress, but is repli-
cated today in 47 of the 50 state legislatures.3

There are two strands of conventional wisdom on
the causes of this shortfall in minority representa-
tion. Either districters simply are not trying hard
enough, or entrenched patterns of racial polarization
in housing and voting make proportionality impos-
sible to attain.

This article explores a third option: perhaps better
tools can bring better results. Our algorithmically
generated ensembles—collections of thousands or
millions of alternative maps—show that better-
designed redistricting plans could close much (though
not all) of that gap and ensure that the House of Rep-
resentatives and state legislatures ‘‘look more like
America’’ than at any time in our history.

The tools to study this issue comprehensively did
not exist as recently as a decade ago, when the 50
states last redistricted. Since then, algorithmic inno-
vation and steadily improving computational power
have revolutionized our ability to understand the va-
riety of redistricting plans that could plausibly be
enacted. It is now possible to generate a multitude
of diverse, valid plans on a laptop overnight—and
to describe how they are distributed in the universe
of all possibilities. That in turn allows any plan, in-
cluding one proposed for adoption, to be compared
meaningfully to the available alternatives.

Not surprisingly, work in this direction has come
to dominate some types of redistricting litigation in
the last few years, especially lawsuits claiming that a
districting plan is excessively partisan. But until now,
ensemble methods have not seriously grappled with is-
sues of race in redistricting. And these tend to be the
most heavily litigated issues in the field, due to the de-
mands imposed by the Voting Rights Act (VRA) and
the Constitution’s Equal Protection Clause. The legal
rules addressing race in redistricting are much more
complex than, say, the ‘‘one person, one vote’’ doctrine
in federal constitutional law, or the contiguity require-
ments in state constitutional law. Modeling the racial
rules is far from straightforward.

This article takes up that task. First, we develop
methods that incorporate the legal rules involving
the consideration of race in redistricting into the al-
gorithms that generate redistricting ensembles. The
main applications of these VRA-conscious ensem-
bles would be to study the normal range of attributes
of lawful plans, for instance to assess claims of par-
tisan gerrymandering. Second, we show that the
methods used to accomplish that task can also be
used to draw maps that increase opportunities for
minority groups to elect candidates of their choice.
As it turns out, there is the potential to provide much
more opportunity, at least in some states, than was
previously recognized. In short, the algorithmic cre-
ation of redistricting ensembles holds the promise
of not only sharpening our understanding of redis-
tricting choices and tradeoffs, but also better foster-
ing the aims of the Voting Rights Act, ‘‘a statute
meant to hasten the waning of racism in American
politics’’ (Johnson v. De Grandy 1994, 1020).

To that end, one of our strongest findings deserves
particular emphasis. In the past, the dominant method
of looking for effective minority electoral opportunity
has been to use district demographics as a proxy, such
as by seeking majority-Black districts to secure effec-
tive electoral opportunities for Black voters. But in
our case studies, demographic share alone is a poor
proxy for effectiveness; relying too heavily on demo-
graphics could inadvertently disempower minority
citizens by packing them into too few districts.

Our methods will be most helpful for proactive
legislatures and commissions that wish to draw le-
gally defensible maps that will prove effective for
racial and language minority groups while uphold-
ing other criteria simultaneously. The tools de-
scribed here will generate examples of maps with
valuable properties and will help elucidate the cost
in minority electoral opportunity, if any, that results
from strict application of lower-ranked criteria.
Although these tools also may be helpful to

1Bialik (2019). This figure refers to the 116th Congress (2019–
2021).
2This number is based on 2019 one-year American Community
Survey (ACS) data, U.S. Bureau of the Census (2019a), figured
as the share of citizen voting-age population comprising those
who are either Hispanic/Latino or from a non-white racial group.
3See U.S. Bureau of the Census (2019b); National Conference
of State Legislatures (2020). Putting those sources together,
the three exceptions are Arizona (34.4% minority citizen
voting-age population vs. 38% minority legislators), Hawaii
(73.2% vs. 76%), and Ohio (16.7% vs. 18%).
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plaintiffs who wish to challenge existing maps
under the VRA, that use is not our main focus.

We will use three main elements: a Markov chain
procedure that proposes successive modifications to
districting plans, an ecological-inference procedure
that identifies minority-preferred candidates based
on precinct-level historical election data matched
to demographics, and a benchmark plan from
which we can establish a presumptively acceptable
number of effective districts.

Below, for our proof of concept, we will use a
spanning-tree recombination procedure for the first
element, a hierarchical Bayesian model for the sec-
ond, and an enacted plan that has survived VRA scru-
tiny for the third4—but we emphasize that the main
contribution of the current article is the overarching
protocol, which is designed to be modular, letting
users substitute in other alternatives to play these
three roles. Combining these elements, our protocol
defines effective districts for minority groups at any
given threshold of confidence.

Article Outline. We begin in section 2 with a re-
view of the burgeoning science of redistricting en-
sembles. Section 3 summarizes the legal rules
governing the consideration of race and racial data
in redistricting. Section 4 sets forth our VRA-
conscious ensemble protocol, relying on recent elec-
tion data to generate effectiveness scores that rate
each district’s likelihood of nominating and electing
minority-preferred candidates. Section 5 applies this
protocol to congressional redistricting in Texas,
where both Latino and Black residents are numerous
enough to require VRA attention. Section 6 applies
techniques from statistics and machine learning to
the Texas results to show the importance of using de-
tailed electoral data. And section 7 concludes with a
clear proof of concept showing that the long-standing
underrepresentation of minority voters in Texas, far
from being an immutable fact, can be addressed
through proactive mapmaking.

Finally, we have made the corresponding soft-
ware tools available for public use in our GitHub
(MGGG Redistricting Lab 2020a) and through a
user-friendly portal at districtr.org/VRA.

2. ENSEMBLE METHODS: ALGORITHMS
FOR CREATING DISTRICTING PLANS

As Justice Kagan explained in her dissent in
Rucho v. Common Cause (2019, 2517–23), a com-

puter equipped with an algorithm that generates a
huge number of redistricting plans could potentially
create a baseline to help answer questions like:

� What is an extreme, or unfair, number of
Republican (or Democratic) districts, given
the partisan composition and political geogra-
phy of the state’s voters? or,

� What would be a typical number of competi-
tive districts, given those same parameters? or,

� Given the new census data, can a plan comply
with the ‘‘one person, one vote’’ principle with-
out pairing two incumbents’ homes in the same
district?

And as we will soon demonstrate, an ensemble
approach also can help us address questions like:

� What is a fair map for Latino and Black voters?

2.1. Illustrative example: Iowa

To see the power of redistricting ensembles, let’s
consider the case of Iowa. According to the 2010
census, Iowa’s 99 counties contained 216,007 cen-
sus blocks and 3,046,355 residents—enough for
four congressional districts. Iowa’s constitution
simplifies the redistricting problem by mandating
that ‘‘no county shall be divided in forming a con-
gressional district,’’ so drawing our four districts re-
quires assigning only the 99 counties (Iowa Const.
art. III, x 37). We might hope to approach the task
of finding fair plans by first building all possible
plans, and comparing a particular plan to the full set.

But even this modest problem of dividing 99
counties into four connected parts (four contiguous
districts) is currently out of reach: no one has yet
been able to find a precise answer for this problem
by computer, even with a clever enumeration algo-
rithm and a month of computing time.5

This problem is only compounded in most states,
which build their districts from census blocks

4As described below, we use an implementation called Gerry-
Chain for plan generation, we use eiPack for ecological infer-
ence, and we use the current enacted Texas congressional
map as our Voting Rights Act (VRA) benchmark.
5Indeed, even the simpler problem of partitioning a 9 · 9 grid
into nine districts of nine units each has 706,152,947,468,301
solutions.
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(on average, there are more than 2,000 blocks per
county). The full enumeration is subject to what is
called combinatorial explosion, and the associated
counting problem has forbidding complexity. This
means not only that we lack the computing power
to enumerate all plans today, but that computers
likely will never be able to do so.

A second issue is that most plans in a complete
enumeration would be irrelevant to the practical
problem of redistricting because they would be bla-
tantly unlawful. This is illustrated in Figure 1. The
plan on the left, in which the biggest district has
more than 750 times the population of the smallest
one, would patently violate the federal Constitu-
tion’s ‘‘one person, one vote’’ doctrine.6 This
means that districting plans with large population
inequalities are of no practical interest, so a useful
ensemble should exclude them.

The map on the right has much better population
balance, but it also falls outside the plausible zone
for plans. Its blue G-shaped district (‘‘G’’ for
gerrymandering) flaunts the mapmaker’s disrespect
for the traditional districting principle of compact-
ness, which Iowa law explicitly safeguards (Iowa
Code x 42.4.4).

Good ensemble methods allow us to draw a
representative sample of compact, contiguous,
population-balanced plans from the full space of
possibilities—that is, a sample distributed in a
known way that is suited to the law. By appealing
to this sample, we can hope to address questions
of partisan fairness, competitiveness, racial fairness,
and all the other concerns and values we bring to
bear on redistricting. To illustrate this methodology,

we generated a sample of 100,000 valid Iowa con-
gressional maps by the recombination method
explained below in section 4.2, without taking par-
tisan data into account.7 This lets us compare the
enacted plan against these alternatives in terms of
votes cast for president in the November 2016 elec-
tion, say. In our ensemble of compact, contiguous,
population-balanced plans, nearly 75% have one
safe Republican seat and three competitive seats
(using a 55% majority as the line between competi-
tive and safe). The current enacted plan has one heav-
ily Trump-favoring district and three competitive
ones, putting it in the largest category. This does
not tell us by any stretch that the current plan is
ideal or fair, but it does tell us that this plan is not
an outlier by this way of measuring partisanship. This
illustrates an elementary use of ensembles to bench-
mark partisan lean and competitiveness.

Similarly, ensembles can help us study how plans
made without regard to race might tend to distrib-
ute a state’s minority populations across districts,
merely as a function of human geography. This

FIG. 1. These two partitions of Iowa into four connected pieces are not plausible for adoption as districting plans. The first has
nearly all the state’s population in a single large (green) district. The second more closely balances each district’s population, but
would likely violate Iowa law’s compactness requirement.

6A district-to-district population difference greater than 10% of
the ideal district size is presumptively unconstitutional under
the Fourteenth Amendment; for congressional districts, the
standard is far stricter, under Article I of the Constitution
(Brown v. Thomson 1983, 842–48; Karcher v. Daggett 1983,
730–44). The malapportioned plan in Figure 1 has top-to-
bottom deviation nearly as large as the whole state, or close
to 400% of ideal district size.
7ReCom always produces contiguous, balanced districts, and
favors compact districts for reasons explained below in section
4.2.
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racial baseline has been studied in a range of reports
and papers, including MGGG Redistricting Lab
(2018d, 2018a, 2019b, 2019a); DeFord and Duchin
(2019); Duchin and Spencer (2021). But exploring
the distribution of racial-group members in an en-
semble is a different task from building an ensemble
that takes VRA compliance into account. We will
turn to that task shortly.

2.2. Building ensembles

Ensemble methods backed by powerful comput-
ers have proliferated in the last decade. Large
ensembles of alternative plans proved critically im-
portant in federal-court cases invalidating extreme
partisan gerrymanders in Ohio and Michigan (be-
fore the Supreme Court in Rucho held these claims
nonjusticiable in federal courts) and more recently
in similar state-court cases in Pennsylvania and
North Carolina (Rucho v. Common Cause 2019,
2493–508; League of Women Voters of Mich. v.
Benson 2019, 893–908; Ohio A. Philip Randolph

Institute v. Householder 2019, 1025–62, 1082–85;
League of Women Voters v. Commonwealth 2018,
770–81; Common Cause v. Lewis 2019, 17–43,
80–96).

Past ensemble methods used in litigation have
focused on generating plans while controlling pop-
ulation balance, contiguity, compactness, and some-
times county and municipality integrity. Generating
large ensembles while accounting in some way for
these legitimate districting criteria helped judges
decide whether one political party’s disproportion-
ate successes were due to the state’s geographic fea-
tures and the distribution of its voters—or to
partisan manipulation of district lines. But in build-
ing their ensembles, the experts who testified in
these cases did not seriously grapple with the legal
requirements involving the consideration of race
in redistricting.

In the Wisconsin case, for example, Democratic
plaintiffs brought partisan-gerrymandering claims
against a state Assembly plan that had resulted in
Republicans winning 60 or more of the 99 seats,
even in elections where Democratic candidates col-
lectively received more votes than their Republican
counterparts. In work prepared for the litigation
and described in a subsequent article (Chen 2017),
political scientist Jowei Chen built an ensemble of
alternative Assembly plans to help evaluate the
enacted plan and to demonstrate that the heavy

advantage that Republicans enjoyed under that plan
did not result inevitably from the political geogra-
phy of the state’s voters. Chen generated an ensem-
ble of plans that altered boundaries for 92 of the 99
districts, while ‘‘freezing’’ seven heavily minority
districts in and around Milwaukee, one of which
had been ordered into effect to remedy a VRA vio-
lation.

Likewise, in the North Carolina cases, the ex-
perts’ ensembles relied on proxies for districts’ ef-
fectiveness for minority voters. For example,
consider the work of one plaintiffs’ expert, mathe-
matician Jonathan Mattingly, as described in a sub-
sequent article by his research group (Herschlag
et al. 2020). Mattingly’s work in North Carolina
used demographic targets of 44.48% and 36.20%
Black population for two congressional districts—
the precise levels found in the enacted plan that
the plaintiffs were challenging. He then built an en-
semble by iterating a random step biased to favor
plans that hit those demographic targets.8 In addi-
tion to the effects of this tilted search, he discarded
plans that fell short of those targets from the final
ensemble presented in court, so that the prescribed
population levels served as a minimum for all in-
cluded plans.

In the context of these mid-decade partisan-
gerrymandering cases, the experts’ decisions to
de-emphasize VRA complexities were understand-
able. The litigation, after all, focused on party, not
race, and lawful VRA-compliant districts were al-
ready in place. But at the beginning of a new de-
cade, with fresh census results available, that
option will be foreclosed, as the minority districts
from the previous map will have become either
over- or under-populated due to population shifts
and will thus violate ‘‘one person, one vote.’’ So
the minority districts (like all other districts) will
have to be redrawn to accommodate the new census
data. When generating alternative plans to create a
baseline for comparison, redistricters will need to
account for the delicate legal requirements imposed
by the VRA and the Constitution.

For techniques that have been implemented to
build VRA requirements into redistricting ensembles,

8Mattingly’s method used a search procedure weighted to favor
plans with better scores, based on a combination of population
balance, compactness, county integrity, and nearness to his de-
mographic targets for Black population.
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the literature review is brief. In a new Yale Law

Journal article called ‘‘The Race-Blind Future of
Voting Rights’’ (Chen and Stephanopoulos 2021),
Jowei Chen and legal scholar Nick Stephanopoulos
take the problem of identifying suitable VRA dis-
tricts head-on, defining a minority opportunity dis-
trict by using a combination of partisan data
(returns from the 2012 presidential general elec-
tion) and demographic data (voting-age population
from the 2010 census). In particular, they define a
minority opportunity district to be one in which (1)
the candidate of choice (typically Obama) carried
the district in the general election and (2) most
of the candidate’s support is estimated to have
come from minority voters. This is somewhat
closer in spirit to the method proposed here,
though this article draws dramatically different
conclusions from theirs.9

Our method for measuring district effectiveness,
described in section 4 below, will draw on a much
larger collection of recent elections, pairing a pri-
mary with each general. The outcomes from these
elections are the essential components of our effec-
tiveness scores. And in section 6 we will show that
the scores we develop cannot be well approximated
by considering only a district’s partisan lean and
demographics.

2.3. Using ensembles

As we develop techniques for building VRA-
conscious ensembles, there are two important
general caveats about how and how not to use
these ensembles.

Comparison, not selection. Our protocol is not
designed to simulate the nuanced judgment of a sea-
soned voting-rights attorney. Rather, as we generate
a chain of thousands of maps, we need a fast and re-
liable rough cut for VRA compliance. Our protocol
uses a random iterative process in which districting
plans are proposed, weighed, and potentially ac-
cepted into our ensemble of plans. We will be de-
signing an in-or-out criterion that can be assessed
in a fraction of a second. It is too much to expect
perfection in excluding all unlawful maps and in-
cluding all lawful ones, partly because the law itself
is hardly a bright-line field. For example, even what
seems like a rule with a clear threshold, such as the
constitutional prohibition against state-legislative
plans with population deviations greater than 10%,
has exceptions in case law (Cox v. Larios 2004;

Unger v. Manchin 2002). Nonetheless, an ensemble
that includes most of the lawful maps that are pro-
posed in the chain and rejects most of the unlawful
ones will suffice for our goals of comparison and
benchmarking. Ensembles should not be regarded
as supplies of plans ready for immediate adoption;
they are not likely to be good plans without exten-
sive human vetting and adaptation.

Normal range, not ideal. We advocate using
redistricting ensembles to learn a normal range for
metrics and measures under the constraints of a
set of stated redistricting rules and priorities.
Ensembles allow us to justify statements such as
Plan X is an outlier in its partisan lean, taking all

relevant rules into account. While talking about
normal ranges and outliers, we should avoid the
temptation to valorize the top of the bell curve (or
its center of mass, or any other value) as an ideal.
By analogy, we can talk about people who are un-
usually tall or short without believing that any
height is most desirable or ideal. If the 50th percen-
tile height for American women is 5’4’’ and the 99th
percentile height is 5’10,’’ we can conclude that a
woman who is six feet tall is unusual, and we can
look for reasons (family history, diet, and so on)
to explain her height. But it would be quite strange
to decide that a woman who is 5’4’’ is a ‘‘better’’
height than one who is 5’5.’’

Justice Kagan’s Rucho dissent skirted the edge of
this temptation. She mostly reasoned from ensem-
bles just as we will recommend here, envisioning
a bell curve (in that case, of partisan advantage)
and describing plans far from the bulk of the
curve as presumptively impermissible: ‘‘The further
out on the tail, the more extreme the partisan distor-
tion and the more significant the vote dilution’’
(Rucho v. Common Cause 2019, 2518). But in the
course of describing the outlier logic, she implied
that plans ‘‘at or near the median’’ are the best of
all. An outcome ‘‘smack dab in the center’’ (in Jus-
tice Kagan’s words) may not be in any sense the
most fair, however. For instance, turning to the
November 2012 Obama-Romney election as a
touchpoint, Obama received nearly 53% of the
major-party vote in Iowa. Even if just over half

9For their method’s details, see the full description in Chen and
Stephanopoulos (2021). For a critique of their definition of mi-
nority opportunity districts and its application, see Duchin and
Spencer (2021).

412 BECKER ET AL.



the congressional plans in our ensemble have three
Obama-favoring districts out of four (making that
the median outcome), we might still reasonably
consider a map with two Obama-favoring and
two Romney-favoring districts to have at least as
strong a claim on fairness, given the nearly even
vote split.

Likewise, there would be no reason to prefer a
map that preserves intact a median number of
whole counties or municipalities. Indeed, some
states’ redistricting laws expressly demand keeping
the greatest practicable number of counties or mu-
nicipalities intact.

The same warning, to be wary of the magnetic
attraction to the middle of a bell curve, surely
applies as well to racial fairness. If a state’s Latino,
Black, Asian American, and Native American res-
idents have historically been (and currently re-
main) underrepresented, we should gravitate
toward solutions that fix the shortfall rather than
perpetuate it. Fortunately, federal law pushes redis-
tricters in the right direction.

3. THE LAW OF RACE
AND REDISTRICTING

The rules regarding the consideration of race in
redistricting flow primarily from two sources of fed-
eral law: the Fourteenth Amendment’s Equal Pro-
tection Clause and Section 2 of the Voting Rights
Act, which Congress, exercising its power to en-
force the Fifteenth Amendment, enacted in 1965
and significantly revised in 1982.

3.1. The Voting Rights Act prohibits

minority vote dilution

Section 2 of the VRA prohibits a redistricting
plan that abridges any citizen’s right to vote ‘‘on ac-
count of race or color [or membership in a
language-minority group]’’ (VRA xx 10301(a),
10301(f)(2)). Minority plaintiffs can establish a vio-
lation of amended Section 2 by showing, ‘‘based on
the totality of circumstances,’’ that members of their
racial or language-minority group ‘‘have less oppor-
tunity than other members of the electorate’’ to
‘‘nominat[e]’’ and ‘‘elect representatives of their
choice’’ (VRA x 10301(b)).

In assessing whether a redistricting plan provides
equal electoral opportunity under amended Section

2, Congress expressly permitted state redistricters
and federal judges alike to consider recent election
outcomes, namely ‘‘[t]he extent to which members
of a protected class have been elected to office’’
(VRA x 10301(b)). Nothing in Section 2, however,
‘‘establishes a right to have members of a protected
class elected in numbers equal to their proportion
in the population.’’ While electoral success for mi-
nority candidates is important, even more impor-
tant under Section 2 is that the candidate be the
‘‘chosen representative’’ of a particular racial or
language-minority group, regardless of the candi-
date’s race or ethnicity (Thornburg v. Gingles

1986, 68 (plurality opinion)). And Section 2’s lode-
star is ‘‘equality of opportunity, not a guarantee of
electoral success for minority-preferred candidates
of whatever race’’ (Johnson v. De Grandy 1994,
1014 n.11). As the Supreme Court has explained,
‘‘minority citizens are not immune from the obliga-
tion to pull, haul, and trade to find common political
ground, the virtue of which is not to be slighted in
applying a statute meant to hasten the waning of rac-
ism in American politics’’ (Johnson v. De Grandy

1994, 1020).
In redistricting cases ‘‘the ultimate question

[under Section 2] is whether a districting decision
dilutes the votes of minority voters’’ (Abbott v.
Perez 2018, 2332). District lines can dilute the vot-
ing strength of politically cohesive minority-group
members either by ‘‘cracking,’’ or dispersing, them
among multiple districts where they are routinely
outvoted by a bloc-voting majority, or by ‘‘pack-
ing,’’ or concentrating, them into too few districts,
wasting votes that could have mattered in neighbor-
ing districts (Johnson v. De Grandy 1994, 1007).
Section 2 prohibits both cracking and packing
whenever district lines combine with social and his-
torical conditions to impair the minority group’s
ability to elect its preferred candidates ‘‘on an
equal basis with other voters’’ (Voinovich v. Quilter

1993, 153).
In jurisdictions where all sizable demographic

groups (majority and minority alike) consistently
favor the same candidates, a redistricting plan can-
not dilute minority citizens’ voting strength, so Sec-
tion 2 plays no role (Thornburg v. Gingles 1986,
51). But in most states, where voting is in varying
degrees racially polarized, Section 2 can require
replacing one or more districts that elect candidates
preferred by the majority (usually, a white majority)
with districts that would elect candidates preferred
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by one or more minority groups (Johnson v. De

Grandy 1994, 1008). To prevail, Section 2 plaintiffs
must prove that, under the challenged plan, a bloc-
voting majority usually will defeat ‘‘candidates
supported by a politically cohesive, geographically
insular minority group’’ (Thornburg v. Gingles

1986, 49). But even with such proof, plaintiffs’ chal-
lenge to a state districting plan ordinarily will fail if
the plan provides effective opportunities to nomi-
nate and elect minority-preferred candidates in a
number of districts roughly proportional to the mi-
nority group’s share of the state’s citizen voting-age
population, or CVAP (LULAC v. Perry 2006, 436–
38; Johnson v. De Grandy 1994, 1000).

One particularly useful—and simple—method
for assessing minority electoral opportunities under
a districting plan is to add up the votes cast for each
candidate in recent statewide primary and general
elections by district, to learn which districts gave
more votes to the minority-preferred candidate than
to any other candidate (LULAC v. Perry 2006, 428
(majority opinion), 493–94, 499–501 (Roberts, C.J.,
dissenting in part); Session v. Perry 2004, 499–501).
This approach is particularly straightforward if each
precinct is kept intact within a single district: simply
adding up the votes for each candidate in all of a dis-
trict’s precincts shows, for each election, which candi-
date carried the district. The most difficult part of
these analyses, especially in primaries, is identifying
the candidate who was minority-preferred in each
election, which is typically performed by a statistical-
inference procedure comparing demographic pat-
terns to voting patterns (King 1997; King, Rosen,
and Tanner 1999; Elmendorf, Quinn, and Abrajano
2016). But we will take care to place actual electoral
history at the center of our assessment of district effec-
tiveness, keeping the role of statistical inference to a
minimum.

3.2. The Equal Protection Clause prohibits

excessive attention to race

Regardless of what techniques are used to assess
minority electoral opportunities, compliance with
Section 2 necessarily requires detailed consideration
of race and racial data. But a state’s consideration of
race is constrained by the Fourteenth Amendment
mandate that ‘‘[n]o State shall . deny to any person
within its jurisdiction the equal protection of the
laws’’ (U.S. Const. amend. XIV; see Bethune-Hill

v. Virginia State Bd. of Elections 2017, 802). Start-

ing in the 1990s in its Shaw line of cases, the
Supreme Court has identified at least two ways
that the excessive use of race can give rise to a pre-
sumptively unconstitutional racial gerrymander

under the Equal Protection Clause (Miller v. John-

son 1995, 904–05, 910–17; Shaw v. Reno 1993).
First, a bizarrely noncompact district is subject

to strict scrutiny under that Clause if the district’s
boundary is ‘‘so irrational on its face that it can be
understood only as an effort to segregate voters
into separate voting districts because of their
race’’ (Shaw v. Reno 1993, 658). This type of ra-
cial predominance most often arises where a dis-
trict’s perimeter is defined not by the boundaries
of intact precincts, for which electoral data ex-
ists, but by the boundaries of (much smaller) cen-
sus blocks that have been conspicuously sorted
into or out of districts according to their racial
composition (Hebert et al. 2010, 66–68 & n.21;
Alabama Legislative Black Caucus v. Alabama

2015, 274).
Second, although only a minority of justices

have stated that the intentional creation of a
majority-minority district should always be pre-
sumptively unconstitutional, a majority of the
Court has held that districts violated the Equal Pro-
tection Clause because they were drawn to ‘‘main-
tain a particular numerical minority percentage’’ or
to meet arbitrary or ‘‘mechanical racial targets.’’
The Court has thus rejected a bald mandate that
certain districts must have at least a 50% or a
55% Black voting-age population regardless of
whether that percentage was actually shown to be
necessary for the district to nominate and elect
minority-preferred candidates (Cooper v. Harris

2017, 1469; Bethune-Hill v. Virginia State Bd. of

Elections 2017, 799, 801–02; Alabama Legislative

Black Caucus v. Alabama 2015, 267, 275; Bush v.
Vera 1996, 969–72).

3.3. Implications for redistricting ensembles

These legal points have major implications for an
ensemble-creation protocol keyed to compliance
with the VRA and the Constitution. As an initial
matter, recalling the earlier point about ensembles
being far more useful for comparison than for selec-
tion, the focus here is on drawing a collection of
maps that would be relatively safe from challenges
under VRA Section 2, rather than on crafting a map
for plaintiffs to propose when suing the state.
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As a gatekeeping function before ultimately
assessing the ‘‘totality of circumstances,’’ courts
generally require Section 2 plaintiffs to present
an illustrative map showing that the minority
group in question could constitute a literal arithme-
tic majority of the voting-age population (VAP) in
a proposed district.10 The Supreme Court has noted,
however, that a district that falls short of the 50%
threshold yet can still nominate and elect minority-
preferred candidates ‘‘can . [and] should’’ count as
a minority-effective district when assessing a state’s
compliance with Section 2 (Bartlett v. Strickland

2009, 24 (plurality opinion); see also Cooper v. Har-

ris 2017, 1470). So actual electoral opportunity for
minority groups—a track record of effectiveness in
elections—is what matters when defending a map
against a VRA challenge. Taken together, the legal
points elucidated above in sections 3.1 and 3.2 sug-
gest three crucial design principles for a VRA-
conscious ensemble protocol.

(1) Ensure effectiveness in both primaries and

generals. Aiming to weed out of an ensemble
plans that violate Section 2, while retaining
plans that comply, a protocol must assess
whether particular districts will or will not
be effective for minority-preferred candi-
dates seeking both nomination (in primaries)
and election (in generals). This assess-
ment requires attention to both demographic
data and actual election results, including
precinct-level returns from primary and gen-
eral elections.

(2) Avoid a priori demographic targets. Threshold
decisions about the composition of districts
should not be based on purely demographic
targets—for example, requiring a certain num-
ber of districts that are at least, say, 55% La-
tino or 50% Black. That approach not only
could lead to false positives or false negatives
for district effectiveness, but could leave the
methodology vulnerable to constitutional at-
tack for excessive race-consciousness.

(3) Maintain reasonable compactness. To further
reduce constitutional exposure, the ensemble-
generating technique should admit few or no
plans with bizarre district shapes.

We note that both the first and the third principles
recommend the use of precincts, rather than the
much smaller census blocks, when assembling dis-

tricts. Precinct-based plans promote compactness
and facilitate more accurate assessment of electoral
history, which is fundamental to evaluating district
effectiveness. And though they may not achieve per-
fect population equality, that fact usually should not
present significant constitutional concerns.11

4. DESIGN OF A VRA-CONSCIOUS
ENSEMBLE PROTOCOL

In this section, we will describe the design of a
protocol for generating redistricting plans that com-
ply with not only the criteria of population equality,
contiguity, and reasonable compactness, but also the
race-related rules mandated by the VRA and the
Equal Protection Clause. The protocol begins with
data preparation and culminates in the use of a con-
strained recombination algorithm for generating
plans that meet VRA-related requirements. We pro-
pose this as a sound and detailed VRA-conscious

algorithm, but not as the authoritative VRA algo-

rithm. There may well be other ways to incorporate
the legal requirements around race, and to do it well.
But the methods laid out in this section come closer
to the big-picture goal—building a representative
sample of lawful maps—than any previous work
we know. We believe that this elaborated example
of one concrete, reasonable way to take account of
race and the law helps illuminate some key decisions.

We recall from above that the protocol is mod-
ular with respect to three ingredients: a proce-
dure for iteratively modifying districting plans
(here, spanning-tree recombination), a procedure

10See Bartlett v. Strickland (2009, 6, 9–11, 20, 24–25, 26 (plu-
rality opinion)). Bartlett also may be satisfied with a majority of
the proposed district’s citizen voting-age population (CVAP).
And Bartlett’s 50% rule may not apply if the defendant drew
the challenged districts with discriminatory intent, as might
well be the case when a state dismantles an existing minority-
effective district.
11Using whole precincts will rarely raise ‘‘one person, one
vote’’ concerns for state-legislative maps. However, the Consti-
tution imposes stricter population-equality standards for con-
gressional maps (Karcher v. Daggett 1983, 740-41). Although
the most common current practice is to draw congressional
plans so that the largest and smallest districts differ by only
one person, the Supreme Court has upheld plans with signifi-
cantly larger deviations (Tennant v. Jefferson County Comm’n
2012, 762, 764–65; Abrams v. Johnson 1997, 99–100). In any
event, a map built from whole precincts can usually be readily
modified into a map with a minimal deviation by swapping a
limited number of census blocks between adjacent districts.
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for identifying minority-preferred candidates (here, a
Bayesian hierarchical model of ecological inference),
and a benchmark that prescribes a threshold number
of effective districts for each minority group (here, an
enacted plan that has evaded or withstood VRA scruti-
ny). Our choices can be swapped out for others as new
methods or special circumstances warrant, leaving the
overall structure intact.

4.1. Preparing data

4.1.1. Electoral and demographic data. We
will require a cleaned precinct shapefile for the
state, with election returns and demographic data
joined to those precincts.12 This can be difficult to
obtain because precincts change from year to year
and a longitudinal precinct shapefile is needed for
the span of years covered by the election dataset.
Furthermore, we may need to clean the precinct
shapes to get suitable topology: to be usable as
building blocks for plans, precincts must tile the
state, with every resident located in one and only
one precinct.13

The shapefile allows us to match reported vote
totals to geographic units and to record which
pairs of precincts are adjacent, which will be needed
to ensure that districts are contiguous. For each pre-
cinct, we have joined data on total population from
the 2010 decennial census, adult citizen population
by race and ethnicity from the American Commun-
ity Survey (ACS) five-year rolling estimates ending
in each election year, and counts of votes received
by each candidate for statewide election in a large
set of primary and general elections.

Although our modeling concern is with districted
elections for Congress and state legislatures, our
analysis is based primarily on statewide (exoge-
nous) contests. This is because the choices facing
voters in districted elections vary across the state:
in any given election year, some districts are uncon-
tested, some have strong incumbents or other idio-
syncrasies. When district boundaries are moved to
create alternative plans, the newly proposed districts
will be composed of voters who faced completely
different candidate choices. It is not clear how
votes for one candidate would translate to votes
for a different candidate. By contrast, statewide
elections allow us to make apples-to-apples com-
parisons across different parts of the state, since
the same set of candidates competed everywhere.
Ideally, we would include all statewide contests

for the last ten years, but this is not always possible
because of data availability and precinct instability.
As we will discuss further below, this protocol is not
intended for use with fewer than five general elec-
tions, grouped with the primaries (and, where appli-
cable, primary runoffs) that preceded them.

Because our main concern here is whether
minority-preferred candidates are ultimately elected
to office, we link the primary (and primary runoff)
for a given office in a given year to the general
election for that same office that same year, and
define success by whether the candidate who was
minority-preferred in the primary succeeded at all
stages of the electoral process.

We use a simplified set of racial groups: every
person who identified as Hispanic/Latino on the
census or ACS is classified as Latino. We use the
term Black for non-Hispanic respondents who se-
lected Black as their single racial category, and we
use White similarly. All other respondents (those
non-Hispanic persons selecting two or more races,
Asian American, Native American, and so on) are
grouped together and designated as Other. In a
state with only one sizable minority group, all
other minority groups may be merged into the
Other category for purposes of this VRA protocol.
Citizen voting-age population is denoted by
CVAP, and we use HCVAP, BCVAP, WCVAP, and
OCVAP to denote Hispanic/Latino, Black, White,
and Other CVAP. We focus on Latino and Black vot-
ers as minority groups because our main case study
involves congressional redistricting in Texas. In
other states, like California, Hawaii, or Alaska, or
in certain local districting projects, we might spec-
ify different racial groups for analysis.

Importantly, we make no prior assumptions about
whether the voting behavior of Latino, Black,
White, or Other groups will align. This is a case-
by-case empirical question addressed with statisti-
cal inference.

4.1.2. Candidates of choice. As explained
above, the linchpin of a vote-dilution claim under

12Shapefiles store data about the position and attributes of a
geographic unit, such as a precinct.
13Cleaned and vetted shapefiles that are suitable for longitudi-
nal data are easier to create in some states than others. For in-
stance, the Louisiana shapefile used in this study required
hundreds of person-hours of data preparation from members
of the MGGG Redistricting Lab. It would be extremely difficult
to obtain an analogous data product in Mississippi, for example.
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the VRA is the right to replace districts where
minority-preferred candidates usually lose with dis-
tricts where they have a realistic opportunity to win
(Johnson v. De Grandy 1994, 1020). To assess
whether a district falls into the former category or
the latter requires determining which candidates
are preferred by members of each sizable minority
group.

Because vote totals are not reported by racial
group, we cannot directly determine which candi-
dates are minority-preferred. Instead, this effort
falls under the umbrella of ecological inference

(EI). Voting preferences are never monolithic, but
techniques for measuring racial polarization have
been refined for decades, and they can help us esti-
mate the degree of bloc voting. The techniques in
the ecological-inference family, like all statistical-
inference methods in the presence of missing data,
give imperfect and uncertain answers (Elmendorf,
Quinn, and Abrajano 2016). It is fundamentally im-
portant to estimate the error that is produced by
techniques and keep track of how it compounds or
cancels out in our high-level conclusions. As
much as possible, we will opt to make gradated
and not bright-line determinations from the outputs
of EI.

Our VRA-conscious ensemble protocol requires
identifying the candidate who was preferred by
each sizable minority group in each election, together
with confidence measures that these preferred candi-
dates are correctly identified. To perform the check
for minority control of a district, as well as to identify
district-wide candidates of choice for newly pro-
posed districts, we make use of not only statewide
but also precinct-level vote estimates by race for
each candidate (with variance estimates). Users can
employ various methods to generate these estimates
(e.g., using King’s EI, Ecological Regression, exit
polls, or voter files). Notably, this allows our protocol
to immediately incorporate any future advances in in-
ference techniques.

In the implementation described here, we gener-
ate estimates using a version of King’s EI, specif-
ically the ei.MD.bayes function from eiPack
(Lau, Moore, and Kellermann 2020) which is
based on the Bayesian hierarchical Multinomial
Dirichlet model for R · C tables proposed in
King, Rosen, and Tanner (1999).14 For each elec-
tion we run EI at the statewide level, using
precinct-level input tables. The inputs for each pre-
cinct are the row and column sums for the R · C

table of vote counts. The row sums correspond to
the precinct’s estimated number of adult citizens
in each racial group (HCVAP, BCVAP, WCVAP,
and OCVAP). The column sums are the precinct’s
vote totals for each candidate as well as a None

count, which is the sum of the four CVAP figures
minus the sum of the recorded vote totals for all
candidates, estimating the number of nonvoters.
EI then infers values for the internal cells of
these tables, i.e., estimated vote counts by racial
group and candidate. Inclusion of the None column
allows the underlying model to estimate differen-
tial turnout by race; without this, EI would rely
on the unrealistic assumption that adult citizens
from all demographic groups were equally likely
to have cast a ballot.

Each EI run generates a large random sample of
estimated precinct vote counts; we can sum these
across the entire state to get statewide estimates.
For each racial group, the candidate with the high-
est average estimated vote total for a given election
is identified as the group’s ‘‘candidate of choice.’’
For a measure of confidence that Candidate X
was the candidate of choice for a racial group in
a given election, we first take repeated draws
from the EI distribution and record the frequency
with which X receives the most votes from that
group. We then transform this to a confidence
score.15

14Here, R · C stands for the number of rows (or racial groups) R
and columns (or candidates) C.
15Let p be the frequency in a batch of trials with which X is ob-
served to be the preferred candidate. We logistically transform
this to a confidence score using C(p) = 1/(1 + exp(18 - 26p)) to
weight the election in the compound score of district effective-
ness (see Table 1 below). The parameters 18 and 26 were cho-
sen so that an election in which the draws have Candidate X
ahead only 50% of the time should receive almost no weight
(because it is a toss-up); but if Candidate X comes out ahead
in, say, 85% of trials, the confidence should be nearly 100%.
It is certainly possible to use other parameters, to skip this
step and just use C(p) = p as a measure of confidence, or even
to forgo confidence altogether. Without some factor of this
kind, however, the resulting score will have more noise due to
cases where the candidate of choice is uncertain. If we do not
strongly down-weight the uncertain elections, we risk a situa-
tion in which just rerunning the EI with identical settings
could produce a significantly different answer. We discuss
this and other robustness checks in footnote 31.
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4.2. Building new plans by recombination

The science of representative sampling has ad-
vanced greatly in the past few years as ensemble
methods for redistricting have matured. Using a tech-
nique known as Markov chain Monte Carlo

(MCMC), it is now possible to efficiently create an
ensemble of thousands or millions, even billions, of
plausible maps. We can even sample while keeping
control of the weighting that makes some kinds of
plans appear more often than others. For example,
we can be sure that a preference for more compact
plans is designed to depend only on a prescribed
score of compactness and on no hidden factors.16

The engine of our district-generation process is
a Markov chain known as recombination, abbrevi-
ated ReCom, whose central idea of using spanning
trees to split districts is fast becoming the standard
in the field (DeFord, Duchin, and Solomon 2021;
Autrey et al. 2021; McCartan and Imai 2021).
We will apply it to plans built from whole pre-
cincts, the smallest geographic units for which
we have accurate, detailed electoral data. Earlier
MCMC methods for redistricting reassigned a sin-
gle geographic unit (such as a precinct) from Dis-
trict A into adjacent District B at each step,
creating a new plan that agreed with its predeces-
sor on the assignment of every unit except one.
(If Texas, for example, had 9,000 precincts,
8,999 would stay in their districts at each step.)
By contrast, ReCom typically proposes a much
larger change: at each step, two entire (adjacent)
districts are merged and then re-split in a new
way that is completely independent of the division
in the previous plan. This means that a single
ReCom step can reassign hundreds of precincts at
a time. (Each of Texas’s 36 congressional districts,
for instance, has roughly 9,000/36, or 250, pre-
cincts, so each recombination step performs a ran-
dom division of roughly 500 precincts into two
new districts.) By iterating this transformation
hundreds of times per minute, the map soon loses
any resemblance to its starting configuration.

A ReCom step merges a random pair of adjacent
districts and splits the region in a new way. Under
the hood, each ReCom step uses a spanning tree,
which is a kind of ‘‘skeleton’’ of the double-district
created by the random merger, and then searches
for a place to cut that tree to leave behind two
population-balanced, connected pieces. So, by
construction, all plans proposed by recombination

are contiguous and maintain the desired population
balance. What is less obvious is that ReCom’s use
of spanning trees also places an automatic priority
on districts that have more internal adjacencies: so
compactness, or a preference for plump, regular
forms over thin necks or stringy appendages, is
also a structural feature of the algorithm (see
Figure 2) and does not have to be set as a manual
choice by the programmer (DeFord, Duchin, and
Solomon 2021). In fact, when the district bound-
aries of a plan generated by ReCom look ragged
to the eye, it is often because the building-block
units themselves (such as precincts) have jagged
edges.17

Over thousands or millions of iterations, this sim-
ple method can undertake far-reaching exploration
of the universe of possible plans subject to popula-
tion balance, contiguity, and reasonable compact-
ness. We will call a set of plans collected in a
recombination chain an ensemble of plans.

Additional features and constraints can be incor-
porated into ReCom either with hard thresholds
(i.e., validity checks) or by using probabilistic ac-
ceptance. To illustrate this, consider the traditional
districting principle that counties should be kept in-
tact when practicable. We could enforce a maxi-
mum allowable number of county splits by adding
an instruction to automatically reject as invalid
any proposed plan that exceeds some level of
county-splitting, creating a constrained ensemble.
A different option would be to impose a bias to
the probability of acceptance, essentially flipping
a weighted coin each time a proposal is generated
that makes it rare but not impossible to accept
plans with a large number of county splits. This
would create a biased (or tilted) ensemble favoring
fewer county splits.

When a proposed plan is rejected, a new plan is
proposed by merging and re-splitting a freshly

16To be precise, the recombination algorithm used here approx-
imately targets a known distribution called the spanning-tree
distribution, where the probability of selecting a particular
plan is proportional to a certain measure of compactness. A
modified algorithm called reversible recombination exactly tar-
gets that steady state. See DeFord, Duchin, and Solomon 2021;
Duchin and Tenner 2018; Sarah Cannon, Moon Duchin, Dana
Randall, and Parker Rule 2020. ‘‘A Reversible Recombination
Chain for Redistricting.’’ On file with authors.
17The reasons spanning-tree partition methods produce com-
pact districts are explored in Duchin and Tenner (2018) and
DeFord, Duchin and Solomon (2021).
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chosen pair of adjacent districts. This continues
until some proposed plan passes the necessary
tests to be accepted, at which point it is added to
our ensemble. The next step proceeds from this
newly accepted map, and so on until the Markov
chain reaches its stopping condition (such as by
collecting a prescribed number of plans). Our en-
sembles contain every valid plan rather than sub-

sampling, or thinning out by accepting only
every 1,000th or 10,000th plan as previous authors
have done (Herschlag et al. 2020; Fifield et al.
2020). The long-range statistical properties are
the same whether we use continuous sampling or
sub-sampling, and we employ standard conver-
gence heuristics from the scientific computing lit-
erature to provide evidence that our chains are run
long enough for the statistics we collect to ap-
proach stationarity.18 For more information about
spanning-tree recombination and for comparisons
to other methods, see DeFord, Duchin, and Solo-
mon (2021); Becker and Solomon (2021); DeFord
and Duchin (2020); McCartan and Imai (2021);
and Autrey et al. (2021).19

Below, we will refer to district-level as well as
statewide EI estimates as we build scores of district
effectiveness. The district-level procedure requires
some thought because of the computational cost of
any calculation that occurs while the algorithm
runs, rather than being performed in advance. It is
not feasible to rerun EI to determine district-level
candidate preferences with each newly proposed
plan in a ReCom chain. We need a highly efficient
calculation to retrieve both a point estimate and an
estimated confidence level when a new district is

formed. To handle this, we make use of the hierar-
chical structure of EI. The EI algorithm generates
large random samples for each precinct from the
distribution of possibilities produced by the under-
lying Bayesian model. This means that we can
store outputs for each precinct in the state. Ideally,
we would save the full detailed histogram describ-
ing the frequency with which various vote counts
were estimated for each candidate and racial
group in that precinct. Because this is too much in-
formation to store, we instead record the point esti-
mate for each group’s support of each candidate in
addition to a simplified coarse histogram of vote
counts, compressed down to just nine values,
which turns out to be enough to recover the shape
of the detailed histogram with remarkable fidelity,
as shown in Supplementary Appendix A. During
the run of the ReCom Markov chain, we can redraw
samples from these coarse distributions and aggre-
gate to the district level for each newly generated
plan to determine the confidence that we have cor-
rectly identified candidates of choice.

4.3. Building raw scores of district effectiveness

We next lay out three ways to use prior election
results in assigning a minority-effectiveness score

FIG. 2. If all contiguous, population-balanced plans were made equally likely, the compact plans (left) would be enormously
outnumbered by bizarrely noncompact ones (right). The ReCom algorithm prefers the compact one, with a relative weight dictated
only by its compactness score.

18Markov chains that take large steps, like ReCom, require
many fewer steps to achieve approximate independence than
methods that iterate very small changes.
19See also Sarah Cannon, Moon Duchin, Dana Randall, and
Parker Rule 2020. ‘‘A Reversible Recombination Chain for
Redistricting.’’ On file with authors.
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to a proposed district: an unweighted score, a score
that weights elections based on statewide voting
patterns, and a score that weights elections based
on voting patterns restricted to the proposed dis-
trict itself. We will denote these scores by sunw,
sstate, and sdist, respectively. Although election-
weighting schemes differ across the three effec-
tiveness scores, each score captures the same
underlying idea: the effectiveness of a district for
a minority group is keyed to the district’s history
of voting for minority-preferred candidates run-
ning for statewide offices. Importantly, because
our districts are built from whole precincts and
we have prior election results matched to those
precincts, no statistical inference is required to de-
termine which candidate prevailed in each district.
We simply total up the votes cast in the district for
each candidate and note which candidate got the
most support.

First, we need to settle on the meaning of a suc-
cessful outcome for the voters of a minority group in
a particular election and district. If the candidate of
choice from the primary does not advance to the
runoff or general, then the outcome of the general
is less informative with respect to the group’s pref-
erences. Therefore, we group elections by pairing
primary and general (or grouping primary–runoff–
general if applicable) as Table 3 illustrates for our
Texas case study. A successful election is one in
which the minority-preferred candidate in the pri-
mary prevailed in both elections in the grouping
(or all three, if there was a primary runoff).20

Our weighting scheme is keyed to the probative

value of each statewide election in determining mi-
nority effectiveness—its value as evidence. The un-
weighted score treats each election equally; no
election is considered more probative than any
other in determining a district’s effectiveness. By
contrast, the statewide weighted score sstate and
the district weighted score sdist treat some statewide
elections as more probative than others and weight
them accordingly. These election weighting factors

each fall on a scale from zero to one. Their product
is the final weight for an election. In keeping with
case law, we up-weight elections if they have certain
features:

� Recent. More recent elections provide stronger
evidence of future electoral opportunity.

� Clear candidate of choice. As described above
in section 4.1.2, our ecological-inference out-

puts come with estimates of the probability
that the minority-preferred candidate in the pri-
mary election has been correctly identified.
Translating this to a confidence that EI has
identified the correct candidate gives greater
weight to elections in which the minority
group has a clearly preferred candidate.

� Group member preferred. An outcome gives
stronger evidence of electoral opportunity
when the minority-preferred candidate is a
member of the particular minority group.

The weighting factors are summarized in Table 1.
We discount elections for each year of age by a mul-
tiplicative factor of 2-1/4 & .841, so that if any one
election is four years older than another, it weighs
half as much. The confidence that we have correctly
identified the minority-preferred candidate is the
same confidence score C(p) described above (see
footnote 15), using draws at the state level for sstate

and drawing from the district-level coarse histogram
for sdist. When gauging Latino effectiveness, we
place twice as much weight on elections in which
the Latino-preferred candidate is Latino; and the
analogous statement holds for other minority
groups. Of course, these detailed weights are
choices made by the modeler. We will introduce a
calibration step for our effectiveness scores in the
next section that makes our outputs more robust to
these parameters, and we tested this by re-running
the protocol several times with slightly different
choices (see footnote 31).

These weighting factors are important for the
legal interpretation we intend. More recent elections
are up-weighted because the predictive value of
election results tends to erode over time, as older
voters pass away, younger citizens reach voting
age, immigrants are naturalized, people move into
or out of the district, and voters change their

20To be precise, suppose the primary candidate of choice is
Candidate X and the runoff candidate of choice is Candidate
Y (who might or might not be the same person as Candidate
X). Then there are three cases we count as primary success.
Case one: X won the primary (in the district) and there was
no runoff. Case two: X received over 50% of the vote in the pri-
mary (in the district), whether or not there was a runoff. Case
three: X ranked first or second in the primary (in the district)
and Y won the runoff (in the district). An election set that
meets one of these primary-success conditions and in which
the minority-preferred nominee wins the general election in
the district is counted as a successful election in the scores
below.
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political preferences and behaviors. Confidence in
correctly identifying candidates of choice is clearly
pertinent, because a wrongly identified candidate of
choice undermines all subsequent conclusions we
will draw. Elections where the minority-preferred
candidate belongs to the minority group in question
are up-weighted because they are more probative: in
the words of the late Judge Richard Arnold, the
VRA’s guarantee of equal opportunity is not met
when ‘‘[c]andidates favored by [a minority group]
can win, but only if the candidates are white’’
(Smith v. Clinton 1988, 1318).

We now have all the ingredients for the raw effec-
tiveness score for a given district and racial group,
multiplying the three factors above to get a weight
w = w(E, D) for each election and district. For in-
stance, if we have 20 elections, then each w will
be .05 for the sunw score, no matter the election.
For the statewide score sstate, the elections will not
all count equally, so that, for example, a recent elec-
tion with an in-group candidate will weigh four
times as heavily as a four-year-old election with
only white candidates.

Each effectiveness score is computed similarly:

score of district D ¼ sðDÞ ¼
X
E2E

w � d

¼ weighted share of elections

won by candidate of choice‚

where d is 1 if the minority-preferred candidate car-
ried the district and 0 otherwise. This expression
applies to all three kinds of effectiveness scores
s = sunw, sstate, sdist. For example, suppose there are
two election groupings separated by four years,
both have equal confidence weights and feature

group members, and the candidate of choice is suc-
cessful in one of those two election sets. Then the
statewide and district raw scores of effectiveness
would be 1/3 if the success was in the earlier elec-
tion and 2/3 if the success was in the later election,
while the unweighted score would be 1/2. The
strength of using an approach that centers on elec-
toral effectiveness rather than demographics is that
we do not make evidence-free assumptions about
how large a Latino population is needed to nominate
and elect Latino-preferred candidates, or similarly
for other minority groups. Rather, we directly and
empirically answer that question by totaling up
votes, district by district. Our direct, empirical ap-
proach is better keyed to actual minority electoral
opportunities, and so also comports better with fed-
eral law. The VRA’s plain text does not equate a
minority-effective district with a majority-minority
district; rather, it demands an assessment of whether
minority citizens have an equal opportunity to
‘‘nominat[e]’’ and ‘‘elect representatives of their
choice.’’ And our empirical approach also respects
the Equal Protection Clause’s prohibition against re-
lying on racial-percentage targets when drawing
districts.

4.4. Calibrating effectiveness scores

The raw effectiveness scores described above
combine election results in three different, reason-
able ways. Each score ranges from zero (never
electing minority-preferred candidates) to one (al-
ways electing them). We next convert these to cali-
brated scores that we will use when deciding
whether to accept plans into the ensemble.

At this stage, we take a group-control factor into
account, combining it with the raw effectiveness

Table 1. Weighting Factors for Effectiveness Scores

Score/Factor Recent Clear candidate of choice Group member preferred

Unweighted (sunw) 1 1 1

Weighted/Statewide (sstate) 1 Most recent

:841 1 year prev:
:707 2 years

:595 3 years

:500 4 years

:421 5 years‚ etc:

8>>>>>><
>>>>>>:

Confidence from statewide EI

1 X belongs

to group‚

:5 otherwise

8>><
>>:

Weighted/District (sdist) Confidence from district-level EI

The weighting factors for the unweighted, statewide, and district-based effectiveness scores (sunw, sstate, and sdist, respectively). All of these are
computed with respect to the primary election in an election set, because the runoff and general may not contain the most-preferred candidate
for the minority group. Here, Candidate X is the minority group’s candidate of choice. These factors will be combined into an election-weighting
term w for all elections in the dataset.
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score because it is relevant to predicting future per-
formance and to ensuring an emphasis on electoral
success for larger numbers of minority voters. It is
clear from redistricting case law that majority-
minority districts are not required for VRA compli-
ance, and indeed that setting out to draw districts
with a demographic target is sometimes prohibited.
At the same time, a district that has only 5% Black
CVAP would not be reasonably viewed as an effec-
tive opportunity district for Black voters, on par
with a district with more significant Black popula-
tion. We have chosen to address this issue with a
factor based on the minority group’s share of district
CVAP.21 Group control of the district is relevant for
two reasons. First, Section 2 of the VRA focuses on
a minority group’s ability to play a controlling or
‘‘decisive . role in the electoral process’’ and not
merely one of ‘‘influence’’ (LULAC v. Perry 2006,
446 (plurality opinion) (citation and quotation
marks omitted)). Second, because Section 2 protects
the voting rights of a minority group’s individual
members, the effectiveness of a district should in
part depend on the number of those members repre-
sented by their candidate of choice.

The goal of the calibration step is to bolster the
probabilistic interpretation of the scores, so that,
for example, a district with s = .5 can be described
as having a 50/50 chance to perform for the minor-
ity group under consideration. To lend justifica-
tion to this probabilistic interpretation, we apply a
standard logistic regression to normalize the raw
scores based on observed success data from actual
enacted districts (specifically, all congressional,
state Senate, and state House elections in the last
decade).22

By design, the calibration step helps ensure that
although the elections that are used in constructing
the raw effectiveness scores are statewide contests,
they still reflect election outcomes in local (dis-
tricted) elections. We think of the logistic transfor-
mation as producing a score that best captures the
observed performance of congressional, state Sen-
ate, and state House districts in the last decade.
Each input (raw) score falls between zero and one;
after applying the logit function we obtain an output
(calibrated) effectiveness score that still falls be-
tween zero and one, but is now easier to interpret.
We will reuse the same notation sunw, sstate, sdist

for the outputs, taking care to refer to the scores
as raw or calibrated when there is a possibility of
confusion.

4.5. Counting effective districts

To assess whether a proposed plan complies with
the VRA, we will need to count effective districts,
and not just report scores. We elect to define a
Latino-effective (or Black-effective) district as one
whose calibrated effectiveness score estimates at
least a certain threshold chance of both nominating
and electing a Latino-preferred (or Black-preferred)
candidate.

This threshold is a parameter to be set by the
modeler, and it may involve considerable discretion.
One consideration may be the mapmaker’s level of
risk aversion, since setting a lower threshold may
result in a higher number of qualifying districts
that can be simultaneously drawn, but some or all
of those districts will be less certain to nominate
and elect minority-preferred candidates. A second
consideration may be how particular districts in
the current enacted map have been characterized
by judges and victorious litigants in prior redistrict-
ing litigation, or how they have actually performed
in prior elections. A third consideration may be the
number of statewide elections in the dataset: we
may choose a higher effectiveness threshold if we
have a smaller set of available elections, to account
for the possibility that the signal from any single
election is misleading.

In our Texas case study below, we have adopted
the threshold condition s > .6—that is, to be deemed
an effective district, we require a greater than 60%
estimated chance of nominating and electing a
minority-preferred candidate. We chose this figure
in view of the above considerations, and because
we found that districts with s > .6 in any one of
our three scores were quite likely to have s > .5 in
the other two versions, increasing our confidence

21Namely, our group-control factor for a district is c = min(2k,
1) where k is the group’s share of CVAP. Alternatively, the mod-
eler could set an election-specific group-control factor in sev-
eral reasonable ways: as the minority group’s estimated share
of votes for the candidate of choice; the group’s estimated
share of the district’s Democratic primary electorate; or the es-
timated group votes for the minority-preferred candidate di-
vided by the total votes for all candidates, for example.
22We tune logit curves f(x) = 1/(1 + exp (-(ax + b))) so that f(0)
‡ 0, f(1) £ 1, and f(c $ si) &di where si are the raw effectiveness
scores of enacted districts, c is group control, and di ˛ {0, 1} are
the ground-truth outcomes (with 1 for success) for the corre-
sponding candidates of choice. The aim is to input a raw effec-
tiveness score s and a group-control factor c and update s to a
probability of effectiveness f(cs). For details and examples,
see Supplementary Appendix B.
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that the districts selected in this way are likely to
perform more often than not.23

4.6. Assembling the ingredients

to build a VRA-conscious ensemble

Running on a standard laptop, ReCom generates
new plans at a pace of hundreds of plans per minute
in the Python implementation in (MGGG Redistrict-
ing Lab 2018b), and runs about 40 times faster in the
Julia implementation in (MGGG Redistricting Lab
2020b), depending on the size of the districting prob-
lem and the tightness of the constraints.24 The VRA-
conscious protocol implemented here in Python
(MGGG Redistricting Lab 2020a) reassesses district
effectiveness scores at each step, which slows the
process somewhat, so that our runs take about 35
steps per minute for the unweighted and statewide
scores and about 15 steps per minute for the district-
level score on a state the size of Texas. For a smaller
state like Louisiana, the speed more than doubles.

The last question to specify our protocol is how
to set the numbers of effective districts that a pro-
posed map must contain for each minority group,
to be presumptively valid under the VRA and the
Constitution, and thus to be included in our ensem-
ble. Our first guide in answering this question is
the state’s most recent districting plan, which may
have been in effect for up to a decade and either
has gone unchallenged in court or has withstood
legal challenges, including VRA claims.25 The sec-
ond guide, discussed above, is rough proportional-

ity, within the meaning of the Supreme Court’s
important VRA decisions in Gingles and De

Grandy: plans are frequently judged by whether
the share of effective districts is similar to each
group’s share of statewide CVAP.

Considering these guides, we will reject proposed
plans that have fewer minority-effective districts
than the benchmark plan; in other words, we will
treat this threshold level of effectiveness as a valid-

ity check in the district-generation algorithm. For in-
stance, if we are considering a single minority group
and the benchmark plan has three districts that are
effective for that group, then each plan included in
the ensemble must have at least three effective dis-
tricts as well. On the other hand, we would reject a
proposed plan if it had so many effective districts
for one minority group that it would relegate an-
other sizable demographic group to substantially
sub-proportional representation.

Surveying the protocol described in this section,
the key to our approach is its close reliance on de-
tailed, precinct-level election results from both pri-
mary and general elections. We do not assume that
some a priori demographic threshold will cleave
districts that provide minority voters with realistic
electoral opportunities from districts that will not.
The approach is deeply empirical, focusing on
whether a specific district, regardless of its precise
demographic percentages, has a recent history of
consistently supporting minority-preferred candi-
dates in both primary and general elections. To
quote Justice Kagan, our protocol is ‘‘evidence-
based, data-based, statistics-based. Knowledge-
based, one might say’’ (Rucho v. Common Cause

2019, 2519 (Kagan, J., dissenting)).

5. CASE STUDY: CONGRESSIONAL
DISTRICTING IN TEXAS

We applied the VRA-conscious protocol de-
scribed in section 4 of this article to build 36-district
Texas congressional plans.

5.1. Data

We downloaded the 2018 Texas precinct shapefile
and statewide election returns from the Texas Legis-
lative Council’s website (Texas Legislative Council
2020). Table 2 shows summaries of the demographic
data obtained from the 2010 decennial census and
the ACS rolling average for the five-year span

23Case law does not dictate how certain we must be of district
effectiveness. When analyzing Texas districts, we found that re-
jection sampling for effectiveness ran as efficiently at the s > .7
threshold as it did at s > .6, suggesting that a modeler could ex-
ercise considerable discretion in setting the effectiveness
threshold.
24To be more precise, we conducted non-VRA trial runs on
Texas, Virginia, and Pennsylvania congressional plans built
out of precincts using identical machines (Intel(R) Xeon(R)
CPU E5-2660 v2 @ 2.20GHz [Ivy Bridge, late 2013]), allowing
districts to deviate from ideal population by only 1%. Over runs
of various lengths and with various seeds, the Python imple-
mentation generated three to eight valid plans per second,
while the Julia implementation generated 120 to 320 valid
plans per second.
25Numbers derived from this benchmark may need to be adjusted
if the state’s political geography or demographics or the number
of districts in a state’s plan has changed (for example, due to re-
apportionment of congressional seats). Our protocol can be run
using a different map as a benchmark if there is reason to believe
the current plan violates the VRA or the Constitution.
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ending in 2018. (We used CVAP from ACS five-year
spans ending 2016, 2014, and 2012 when assessing
elections from those years.) While election data
could be directly joined to the shapefile, we used
the maup package to disaggregate ACS data from
block groups (the smallest unit for which CVAP is
available) down to census blocks and then aggre-
gated the block-level data up to precincts (MGGG
Redistricting Lab 2018c). Total population and
VAP were collected from the 2010 decennial census;
and because these data are available at the block
level, they required no proration and could be di-
rectly aggregated up to the precinct level.

We then analyzed 21 statewide Texas elections
conducted from 2012 to 2018, which are recorded
in Table 3. These were all the statewide elections
conducted since the last round of redistricting al-
most a decade ago—for federal and state offices,
both executive and legislative, omitting only state
judicial elections.

Ultimately, we eliminated from consideration
seven of those 21 elections (struck through in the
table) because there was no contest in the Democratic
primary, which in Texas is a critically important stage

of the electoral process for determining which candi-
dates are minority-preferred. We were left with 14
contests: nine primary/general sets and five primary/
runoff/general sets, where the runoff was conducted
because no candidate garnered an outright majority
of the vote in the Democratic primary.

We also compiled district-level data for the 36
U.S. House, 31 Texas Senate, and 150 Texas House
of Representatives seats, including the race and
party of the winning candidates in all elections
from 2012 to 2018, as well as demographic data
for the districts, for use in the score calibration de-
scribed in section 4.4 and carried out in section 5.3
(History, Art, and Archives, U.S. House of Represen-
tatives, Office of the Historian, 2020a, 2020b).26

5.2. Racial polarization and candidates of choice

The statewide results for general elections in Texas
show a stark pattern of racial polarization. Across 14
separate contests in four election cycles, all three
minority groups consistently voted Democratic, and
white voters consistently voted Republican, as
shown in Figure 3. In Texas, it is commonplace for
more than three-quarters of white voters to vote
Republican and more than three-quarters of minority
voters to vote Democratic in the same election. Fur-
thermore, this basic pattern appears to hold, to a
greater or lesser degree, in every region of the state.

It therefore is not surprising that the great major-
ity of Texas’s non-white officeholders are Demo-
crats. From 2012 through 2018, there were only
two exceptions for Representatives in Congress
(out of 15 Latino or Black members) and eight ex-
ceptions for Texas state Senators or Representatives
(out of 83 Latino or Black state legislators).

No Democratic candidate has won a statewide
general election in Texas since 1994. So none of
the Latino- or Black-preferred candidates in our
14 recent contests prevailed statewide. But the
vote patterns show that each of them carried a sig-
nificant number of districts in general elections
under the current Texas congressional plan and
under every plan in our ensembles.

Just as the Latino-preferred and Black-preferred
candidates in all 14 statewide elections were Demo-
crats (see Figure 3), the same has held true in

Table 2. Texas Demographics

Racial group
Share of total

population
Share

of VAP
Share

of CVAP

Latino 37.62% 33.61% 29.36%
Black 11.48% 11.36% 13.08%
White 45.33% 49.64% 52.28%
Other 5.57% 5.39% 5.28%
Total count 25,145,561 18,279,737 17,858,066

Latino, Black, White, and Other shares of Texas residents by total pop-
ulation, voting-age population (VAP), and citizen voting-age population
(CVAP). Total population and VAP data are taken from the 2010 decen-
nial census, while CVAP data comes from the American Community
Survey (ACS) five-year rolling average ending in 2018.

Table 3. The 14 Election Sets in the Texas Data

2012 2014 2016 2018

President P/G P/G
U.S. Senator P/R/G P/R/G P/G
Governor P/G P/R/G
Lieutenant Governor G P/G
Attorney General G G
Comptroller G P/G
Land Commissioner G P/G
Ag. Commissioner P/R/G G
RR Commissioner G P/G P/R/G P/G

The 14 election sets in our Texas data (5 of which included a primary run-
off), and the 7 general elections that we omitted because the Democratic
nominee lacked any primary opposition. P means Democratic primary; R
means Democratic primary runoff; and G means general election.

26See also Carl Klarner. 2019. ‘‘Racial Identification of State
Legislators 2001–2019.’’ Unpublished data set. Purchased
from <http://klarnerpolitics.org/>.
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congressional elections. The success of Latino- and
Black-preferred congressional candidates in Texas
therefore has hinged on their ability to win Democratic
primaries (and, where applicable, primary runoffs) and
then win general elections. A large majority of white
voters in Texas primary elections participate in the
Republican primary, while most people of color who
participate in Texas primaries vote in the Democratic
primary. So, for VRA purposes, we can currently
forgo analysis of voting patterns in Republican prima-
ries or Republican primary runoffs in Texas.

In Democratic primaries and primary runoffs, we
found a high degree of cohesion across demo-
graphic groups. Because all 14 contests were for
single-member offices (like governor), we focused
on the one candidate in each Democratic primary
who was preferred by each of the four demographic
groups. In nine of the 14 Democratic primaries and
in four of the five Democratic primary runoffs, the
three minority groups (Latino, Black, Other) pre-
ferred the same candidate, as shown in Supplemen-
tary Appendix Table 7.

Given this cohesion in Democratic primaries and
runoffs and especially in general elections, it might
well be possible to treat Latino and Black voters, or
Latino/Black/Other, as a single coalition group for

VRA purposes (Campos v. City of Baytown, 1988,
1244–45). Our main analysis will treat Latino and
Black voters as separate minority groups, but the
same method could be adapted (and indeed simpli-
fied) for coalitional analysis.

As a final and important point relating to our EI
setup, we note that we do not need to run EI on
small geographies to detect regional difference.

For example, in the 2018 gubernatorial runoff,
former Dallas County Sheriff Lupe Valdez and
Houston’s Andrew White are identified as the state-
wide candidates of choice for Latino voters and
Black voters, respectively. But in the Dallas-Fort
Worth Metroplex, Valdez carried both minority
groups. As Figure 4 shows, that effect is visible in
our EI outputs from a statewide run, because the hi-
erarchical model works by computing distributions
of support on each precinct. This lets us identify
Valdez as the Black-preferred candidate in the
Dallas-Fort Worth Metroplex while White is seen
to have carried the Black vote in the Houston area.

5.3. Effectiveness scores and inclusion criteria

In Texas, we have the benefit of seeing results
from 33 separate contests (14 primaries, 5 primary
runoffs, and 14 generals), so that 14 potential suc-
cesses make up the raw effectiveness score.27

According to recent CVAP data (shown in Table 2
above), rough proportionality would require 10.6 dis-
tricts and 4.7 districts that are effective for Latino voters
and Black voters, respectively, given Texas’s current
congressional apportionment of 36 seats. We will
round these to 11 and 5 districts, respectively. If Latino,
Black, and Other voters were treated as a coalition, that
coalition’s proportional share would exceed 17 districts.

Using any of our three calibrated scores, Texas cur-
rently has 11 effective districts for minority groups at
the 60% threshold: seven Latino-effective districts,

Latino

0% 50%White Other Black 100%

FIG. 3. The highest and lowest EI point estimates for each racial group’s support of the 14 Democratic nominees in statewide
general elections: White (15–27%), Other (69–78%), Latino (73–82%), and Black (84–89%).

FIG. 4. The distribution of EI-estimated Black support for for-
mer Dallas County Sheriff Lupe Valdez in the 2018 gubernatorial
runoff. The Dallas-Fort Worth area, in northeastern Texas, is
mostly orange in this map, while the Houston area, in southeast-
ern Texas, is mostly purple. (The map’s gray areas contain few, if
any, Black voters.) This map shows that even statewide EI can
find significant regional variation in a group’s voter preferences.

27To perform the logit calibration step described in section 4.4,
we used all congressional and state-legislative winners from
2012 to 2018. This includes 145 congressional contests (36 dis-
tricts), 600 state House contests (150 districts), and 77 state
Senate contests (31 districts), for a total of 822 data points.
This includes one special election for Congress.
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three Black-effective districts, and one district that is
effective for both groups (see Table 4). If our protocol
focused solely on the most recent elections (e.g.,
2018), however, two additional districts—District 7,
currently represented by Lizzie Fletcher, a white
Democrat, and District 32, currently represented by
Colin Allred, a Black Democrat—might meet the ef-
fectiveness thresholds for Latino voters or Black vot-
ers under some or all of our three calibrated scores.
But in the early years of the decade (e.g., 2012 and
2014) both districts were still reliably voting for
Republicans in statewide and congressional elections.

Since the current map has withstood judicial
scrutiny under both the VRA and the Equal Protec-
tion Clause (Abbott v. Perez 2018, 2324–34), we re-
quire plans in our VRA-conscious ensemble to
meet or exceed that map’s level of effectiveness:
so we require at least eight Latino-effective districts,
at least four Black-effective districts, and a total of
at least 11 districts that are effective for at least one
of the groups. So, for example, a plan whose (Latino,
Black, Both, Neither) effective-district count was
(4, 0, 4, 28) would not qualify for the ensemble be-
cause it falls short of 11 minority-effective districts.
In effect, this approach allows plans whose effective-
district counts are (7, 3, 1, 25) or (8, 4, 0, 24), as well
as plans that dominate one of those outcomes from
the minority perspective by shifting districts from
Neither to any of the other categories.28

5.4. Basic results

In this section we first present evidence to sup-
port the claim that our chains of districting plans
have produced VRA-conscious ensembles whose

statistics have stabilized after 100,000 steps. We
then look at how the statistics from these ensembles
compare to an ensemble built with no consideration
of race and to an ensemble generated with demo-
graphic thresholds as a potential stand-in for VRA
compliance. Put differently, we compare ensembles
generated by our VRA-conscious protocol, which
uses both racial and electoral data, with an ensemble
built with racial but not electoral data and an ensem-
ble built with neither racial nor electoral data.

We built five ReCom ensembles, by running each
of the following kinds of chain until 100,000 maps
are accepted.

(non-VRA) No VRA consideration. Only popu-
lation equality is an explicit validity check, since
contiguity is required and compactness is
weighted into ReCom ensembles by construction,
so the algorithm does not have to be manipulated
to produce reasonably compact districts.

(unw) Constrained by sunw effectiveness. Ensem-
ble inclusion additionally requires at least eight
districts over 60% Latino-effective, at least four
districts over 60% Black-effective, and at least 11
total districts effective for one or both groups,
using unweighted effectiveness scores.

(state) Constrained by sstate effectiveness. Same as
above, but using statewide weighted scores.

Table 4. Statistics for Effective Districts in Current Texas Congressional Plan

Latino effective Black effective

CD Location
HCVAP

% sunw sstate sdist
BCVAP

% sunw sstate sdist
WCVAP

% Representative Race

9 Houston 24.7 44 38 43 46.7 96 96 94 16.1 Al Green Black
15 South Texas 73.7 95 97 97 2.5 8 9 7 22.1 Vicente Gonzalez Latino
16 El Paso 76.0 99 99 97 4.2 11 12 10 17.5 Veronica Escobar Latino
18 Houston 26.9 51 44 51 44.9 95 95 95 22.8 Sheila Jackson Lee Black
20 San Antonio 65.0 97 97 97 5.6 12 12 12 25.8 Joaquin Castro Latino
28 South Texas 69.2 86 93 96 5.5 10 12 8 23.2 Henry Cuellar Latino
29 Houston 64.0 98 97 97 16.2 49 48 46 16.7 Sylvia R. Garcia Latino
30 DFW 22.7 44 38 39 52.1 99+ 99+ 99 21.7 Eddie Bernice Johnson Black
33 DFW 46.5 98 98 95 24.1 78 75 64 25.6 Marc A. Veasey Black
34 South Texas 78.5 98 99 93 1.6 8 9 6 19.1 Filemon B. Vela Latino
35 Austin/San Antonio 52.2 97 97 97 10.3 22 20 24 34.4 Lloyd Doggett White

The population shares and calibrated effectiveness scores for the 11 districts in the current Texas congressional map that are labeled effective for
Latino and/or Black voters. Scores over 60% have darker shading, and scores in the 50–60% range have lighter shading. Mark Veasey’s District 33
is the only one that registers as effective for both Latino and Black voters, though Sheila Jackson Lee’s District 18 and Sylvia Garcia’s District 29
are close. All 11 Representatives are Democrats.

28Although a map with fewer than 18 Neither districts could po-
tentially give rise to a Section 2 claim by white plaintiffs and
thus merit exclusion from an ensemble, our chain runs did
not generate any such plan.

426 BECKER ET AL.



(dist) Constrained by sdist effectiveness. Same as
above, but using district weighted scores.

(CVAP) Constrained by CVAP shares. A plan
must have at least eight districts over 45%
HCVAP and at least four districts over 25%
BCVAP to pass the validity check.29

5.4.1. Convergence heuristics and robustness

checks. Neither ReCom nor any other MCMC
method will work properly if it is not allowed to
run long enough, or if designed in a way that thwarts
convergence. In this article we have used ensembles
built by including every plan that passes the validity
checks and continuing until 500,000 maps are col-
lected. We used two kinds of evidence to arrive at
the conclusion that 500,000 plans are probably suffi-
cient: first, we have confirmed that chains of that
length have aggregate statistical properties that are
approximately independent of their starting points,
or ‘‘seeds,’’ even when the seeds are quite different.
This test is sometimes called the multistart heuristic.
Second, for selected instances we have confirmed
that an ensemble ten times as large has similar aggre-
gate statistics. Passing these tests is not a rigorous
proof of approximately representative sampling, but
these are standard convergence heuristics used across
applied statistics. If any ensemble method fails these
tests, we can be sure that either the setup violates the
conditions for a unique steady state, or we have not
run the chain long enough to approach it.

For the multistart heuristic to have high value, we
should choose plans that are initially very different
and check to see that the ensembles converge to find
the same summary statistics nevertheless. The first
seed plan used for the multistart test for this Texas
case study is the enacted congressional plan that is
currently in effect, which came out of the court pro-
ceedings challenging the early-decade plan of the
Republican legislature. To find two other seeds
with exaggerated differences from the enacted
plan, we turned to the Atlas of Redistricting project
conducted by the politics team at FiveThirtyEight
(Bycoffe et al. 2018). Seed 2 is their Texas plan
drawn to favor Democrats, which is visibly quite
different from the enacted plan and of course has
very different partisan properties as well. Seed 3 is
based on the plan FiveThirtyEight drew with an
eye to compactness scores and county integrity.30

For the ensemble using the statewide effective-
ness score, Figure 5 shows that a simple partisan
statistic—the Clinton share of the major-party pres-

idential vote from November 2016 across the 36
districts—gives roughly the same answers after
100,000 steps, whether the chain commences with
the enacted plan or with either of the two other
seed plans. Similar charts for sunw and sdist are
found in Supplementary Appendix Figure 17.
These are boxplots (or ‘‘box-and-whiskers plots’’)
where for each plan the districts have been sorted
from 1 (the district with the lowest Clinton share)
to 36 (highest Clinton share). The boxes show the
values at the 25th to 75th percentiles, with the me-
dian marked, and the whiskers are set at the 1st
and 99th percentiles. Colored circles show the ini-
tial values for the enacted congressional plan (red)
and the two additional seed plans (blue and green).
The aggregate data collected from the three differ-
ently initialized runs is broadly consonant: across
the districts, the three ensembles have medians, quar-
tiles, and overall ranges within one or two percentage
points of each other, even when the seeds began over
15 points apart. By contrast, Figure 6 focuses on the
18 districts with the highest Clinton share to show
that our VRA-conscious ensembles, by any of the
three scores, do perform differently than if a user
either ignored the VRA entirely or used the CVAP
demographic constraint as a VRA proxy.

We can also compare spatialized statistics such
as the one shown in Figure 7, a record of the num-
ber of times that each precinct appeared in a dis-
trict with sstate > .6. Just 1,000 steps from the
starting point, the heatmaps are visibly different,
showing that the chain has not run long enough
for this statistic to converge. Much nearer visual
correspondence is achieved after 10,000 steps,
and the heatmaps are nearly indistinguishable
after 100,000 steps.

Beyond the multistart trials, we also checked the
same statistics (Clinton vote distribution and cut-
edges score) after 1 million steps. We found

29To build a demographic-target ensemble, we searched for
maps with at least eight majority-Latino districts and at least
four majority-Black districts by CVAP. Initial attempts did
not produce any such maps. We then lowered the thresholds
to 45% for Latino CVAP and 25% for Black CVAP. While
those thresholds are somewhat arbitrary, they roughly track
Table 4, as well as the results of section 6 shown in Figure 9.
30The FiveThirtyEight compact plan did not initially meet our
VRA effectiveness requirements, so we used a heuristic-
optimization run as in Supplementary Appendix H to get it
past the thresholds. Both FiveThirtyEight plans had to be trans-
ferred onto our precinct units with the maup package (MGGG
Redistricting Lab, 2018c).
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minimal difference in partisan or district-shape met-
rics when comparing the initial 100,000 steps, a
sub-sampled 100,000-plan ensemble containing
every tenth map from the set of 1 million, or the
full million-plan ensemble. This raises our confi-
dence both that the size of the sample is adequate

to this level of statistical detail and that a run length
in the hundreds of thousands is sufficient for conver-
gence. Finally, we conducted slightly altered runs to
confirm whether the general findings are robust to
reasonable perturbations in the methodology laid
out in sections 4.3, 4.4, and 4.5.31

FIG. 7. The color of each precinct shows how many times it had appeared in a Latino-effective district after 1,000, 10,000, and 100,000
steps. These VRA-conscious ensembles are drawn with respect to the sstate score from the same three seed maps described in the text.
There are initially significant differences across the three seeds (top row), but the plots converge over the course of the run (bottom row).

31We conducted the following tests: using estimated share of
candidate support rather than CVAP share of the district as
the group-control factor c; replacing the confidence term for
correctly identifying candidates of choice C(p) with the simpler
term p; and dropping both the group-control factor and the cal-
ibration entirely. For the alternative group-control measure, the
changes to scores on Texas congressional plans were minor for
both the enacted plan and generated plans. Changes also were
typically small with the simplified confidence factor, but the
scores became more unstable because outcomes with high EI-
based uncertainty had more weight relative to clear outcomes,
producing an illusion of greater electoral success on some re-

runs of EI. The logit calibration was valuable largely to correct
for the reduction of scores by group control; we find that if we
drop both of them, districts with significant shares of both La-
tino and Black voters are rated higher for both groups than re-
cent electoral history warrants. Finally, we confirmed that the
rate of ensemble generation is similar whether the effectiveness
threshold is set at 60%, 70%, or even 75%. Taken together,
these robustness runs increase our confidence that each of
these parameters that requires user choice is indeed doing
work in constructing a stable score that comports with electoral
history, but that some of the details could be altered without
breaking the protocol.
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5.4.2. Comparing ensembles. In this sec-
tion we compare the five ensembles defined in sec-
tion 5.4 to each other, considering whether those
created using our VRA-conscious protocol differ
significantly from those created without electoral
data or without both electoral and racial data. The
answer is a definitive yes. We have already seen
that the three effectiveness scores are similar to
each other for the enacted plan’s minority-effective
districts (Table 4). Using summary statistics, we can
confirm that the constrained ensembles using the
three scores are similar to each other as well. But
the three VRA-conscious ensembles do not resem-
ble either the non-VRA ensemble (which uses
neither electoral nor racial data) or the CVAP-
shares ensemble (which uses racial, but not
electoral, data as a purported stand-in for VRA
compliance).

The upshot of rejecting plans with not enough
effective districts is seen in Figure 8 with respect
to the sstate score: no plan in the ensemble has
fewer than eight Latino-effective or fewer than
four Black-effective districts. This number of ef-
fective districts rarely happens by chance without
a VRA-conscious method. Interestingly, enforcing
the demographic threshold condition (bottom row)
makes it somewhat more common to get at least
four Black-effective districts but does not make an
appreciable difference in the likelihood of creating
an eighth Latino-effective district. (Supplementary
Appendix F contains analogous plots for the sdist

and sunw scores.)
Table 5 is another view of the comparison. A signif-

icant share of the plans in all the VRA-conscious en-
sembles pass the demographic test set forth above,
but relatively few plans in the non-VRA and the

FIG. 8. The distribution of Latino- and Black-effective districts in a VRA-conscious ensemble (purple), compared to the non-
VRA alternative (top, in green) and the CVAP-shares, demographics-based alternative (bottom, in orange). All are shown with
respect to the sstate score. Note the very modest improvement in effectiveness for the CVAP-shares ensemble compared to the
non-VRA ensemble.
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CVAP-shares ensembles pass our effectiveness tests.32

This suggests that Texas ensembles built without
rich electoral data—or by imposing a racial thresh-
old—are unlikely to reflect VRA compliance and
might well contain far too many maps that violate
federal law. And this problem likely cannot be
cured simply by changing the threshold levels for
the CVAP-shares ensemble: if the CVAP thresholds
are raised, it will become harder to find plans with
enough qualifying districts, and many effective dis-
tricts will be missed.

Comparing the three score-based ensembles
against each other shows some differences but
also substantial alignment in the determinations of
validity. We should not be surprised that scores
that typically track each other within a few percent-
age points can fall on the other side of a bright-line
threshold: if sunw is just over .6, it can certainly hap-
pen that sdist is just below that level. But most dis-
tricts for which one score is over .6 have the other
scores over .5, making them more likely than not
to be effective for the group in question. This stan-
dard is met by more than three-quarters of the sstate

and sdist ensembles. (Again, this is part of the justi-
fication to set the effectiveness threshold for ensem-
ble inclusion at a level buffered safely above 50%.)

Considering all the evidence so far, one might ask
whether any of the three calibrated effectiveness
scores is to be preferred to the other two. Our deter-
mination is that all three scores can be useful. The
unweighted score has the weakest claim of the
three, because on its face it omits factors that are le-
gally and factually relevant. As for the other two
scores, we think it can be valuable to consider
both. The district-weighted score has more regional
discernment and a more sophisticated incorporation
of EI outputs; the statewide-weighted score has a
simpler explanation and still takes uncertainty into

account. While results for different scores are not
identical, the modeling methodology is robust
across three reasonable ways of weighting elections
to measure district effectiveness.

6. LEARNING PATTERNS IN DISTRICT
EFFECTIVENESS

We have just seen that Texas congressional en-
sembles using demographic data but no electoral
data do not resemble ensembles generated by our
VRA-conscious, heavily data-driven protocol. But
what about a method that uses both demographics
and electoral data but in a limited way, needing
only a smaller and simpler dataset? Often, scores
that seem to be complicated by taking many things
into account can be closely replicated using simpler
inputs. In our setting, we would like to see whether
our seemingly sophisticated handling of dozens of
election contests could be well approximated by
pared-down district metrics. To examine this ques-
tion, we now model the nonlinear relationship be-
tween effectiveness scores and lower-dimensional
combinations of demographic and partisan features.

In statistics and machine learning, numerous
techniques have been developed to recognize pat-
terns in data. Classifier models use training data
to ‘‘learn’’ discrete labels (like yes/no effective-
ness), while regression models ‘‘learn’’ continuous-

Table 5. The Share of Maps in the Five Ensembles (Columns) Satisfying Various Criteria (Rows)

Unconstrained
(non-VRA)

Constrained
Constrained

(CVAP)(sunw) (sstate) (sdist)

Satisfies (sunw) 15% (100%) 88% 81% 20%
effectiveness (sstate) 20% 98% (100%) 94% 26%
criteria (sdist) 16% 72% 78% (100%) 22%

Satisfies demographic criteria 30% 39% 46% 51% (100%)

For the effectiveness criteria, maps must have at least eight Latino-effective districts (effectiveness over 50% for the indicated score), at least four
Black-effective districts, and at least 11 distinct districts that are effective (for one or both groups) overall. Note that each VRA-conscious variant is
built to satisfy effectiveness in a chosen score at the 60% level, making it likely to pass at least 11 district effectiveness tests for the other scores at
the 50% level, since the scores are similar but not identical. The demographic test in the bottom row requires a map to have at least eight districts
over 45% HCVAP and at least four districts over 25% BCVAP.

32That only about half the maps in the three VRA-conscious en-
sembles satisfy the demographic criteria implies that it is not
uncommon in Texas for Latino-effective districts to have less
than 45% HCVAP or for Black-effective districts to have less
than 25% BCVAP. That fact in turn suggests that, at least in
some parts of the state, there is significant coalitional voting be-
tween different minority groups.
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valued assignments (like effectiveness scores), on
the basis of features in the data. For our examples,
we are choosing to classify potential Texas congres-
sional districts on the basis of two kinds of features:

� Demographics, using Latino and Black CVAP
shares; and

� Partisan lean, obtained by averaging the
Democratic shares of the 2016 and 2012
major-party presidential vote, with the more
recent general election weighted twice as
heavily as the older one.

We begin with a (non-VRA) ensemble of
500,000 plans, then extract the districts from each
to make a large dataset, containing 997,163 districts
after de-duplication. For each district, we compute
its statewide weighted effectiveness score sstate.
We randomly separate these districts into training
data (80%) and data points held back for testing
and validation (20%).

We attempted several kinds of models. A
k-nearest neighbors (KNN) model assigns a value

to each point based on the k points in the training
data that are closest to its location. This can be
thought of as a predicted effectiveness score for
districts that may be proposed in the future. The
choice of k is made by a validation step that at-
tempts many different values and chooses the one
that provides the highest accuracy.33 For the re-
gression, the learned value assigned to a point is
the average value of its k nearest neighbors,
while the yes/no classification is made by selecting
the majority label among those neighbors.

The outcomes of two-dimensional KNN regres-
sion are shown in Figure 9. They show a compli-
cated district-level relationship between
effectiveness (color), Latino or Black CVAP shares
(x axis), and partisan lean (y axis). If the effective-
ness of districts could be captured with CVAP

FIG. 9. The top row refers to effectiveness for Latino voters and to Latino CVAP; the bottom row to corresponding statistics
for Black voters. Two-dimensional scatterplots (left column) show a collection of districts drawn from a non-VRA ensemble,
arranged by Latino or Black CVAP share on the x axis and partisan lean on the y axis, then colored by their sstate score for
Latino- or Black-effectiveness, respectively. The k-nearest-neighbors (KNN) method is ‘‘trained’’ on that data to infer approx-
imate scores for all possible positions in the square (shown with the training data in the center figures and without it at right).
The hatched areas in the center and right-hand plots contain no labeled data points, so the KNN estimates are less meaningful in
those areas.

33To be precise, we use m-fold cross-validation with m = 10,
then choose the k for KNN with the best average r2 and mean
squared error (MSE) over those ten-fold trials. Using those val-
ues of k, the final accuracy estimates use the full set of training
data and are then corroborated against the withheld testing data.
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shares alone, we would see a vertical line dividing
the effective (blue) from the ineffective (red)
zones. If overall partisanship were a good predictor
on its own, we might see a horizontal dividing line;
this is not the case, but we note that partisanship
alone is more predictive for Latino effectiveness.
If effectiveness could be expressed in a simple lin-
ear relationship between partisan lean and CVAP,
we would see a straight line of some slope separat-
ing the blue and red regions. Instead, we see a more
complicated frontier with a large zone of ambiguity,
especially in Latino effectiveness.34

Because Texas has two sizable minority groups,
and Latino and Black voters often have overlapping
electoral preferences, we might hope to do better by
taking both groups’ CVAP shares into account si-
multaneously. To this end, Figure 10 shows the
same kind of regressions in three dimensions: La-
tino CVAP, Black CVAP, and the same measure of
partisan lean. These plots still reveal complex, non-
linear frontiers and significant zones of ambiguity.

Further pattern-recognition results using vari-
ous models for regression and classification are

found in Supplementary Appendix G. Together,
these methods indicate that scores built from our
involved electoral methodology do not easily re-
duce to combinations of CVAP demographics
and general-election partisan lean. This leads us
to conclude that electoral complexity, perhaps es-
pecially the dynamics of actual primary elections,
is playing an ineliminable role in our determina-
tion of district effectiveness.

7. CLOSING THE REPRESENTATION GAP

Finally, we return to where this article began: the
underrepresentation of communities of color at both
the federal and state level. The algorithmic tech-
niques described in this article can be readily

FIG. 10. KNN regression for a three-dimensional scatterplot of district effectiveness.

34Grofman, Handley, and Lublin (2001) studied what amounts
to effectiveness classification in a similar feature space nearly
20 years ago, positing an ‘‘elbow’’ or V-shaped frontier of effec-
tiveness. For a comparison of our classification results with
their framework, see Supplementary Appendix G.
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reconfigured to point the way to maps that are
likely to promote significant gains in minority
representation.

7.1. Searching for higher effectiveness

Recall first that our VRA-conscious ensembles
are made by imposing yes/no validity constraints
rather than a probabilistic tilt or bias: the proposal
of new plans is made without regard to race, and
the validity criteria are given by a threshold test,
with no preference for plans that exceed the thresh-
old by a wider margin. It is therefore unsurprising
that this procedure does not on its own favor the cre-
ation of plans that greatly surpass the status quo in mi-
nority electoral opportunities. But—so long as
districts are population-balanced, contiguous, reason-
ably compact, and constructed largely or entirely
from intact precincts, as is the case across all our en-
sembles—maps generating rough proportionality for
all sizable minority groups might well be the ones
that actually minimize legal exposure under both
the VRA and the Equal Protection Clause.

By shifting to an algorithm that has a tilted
acceptance function favoring increased minority
electoral opportunities, we found it to be straightfor-
ward to create maps that fully meet (or even exceed)
rough proportionality simultaneously for multiple
minority groups. For example, in Texas we were
able to create maps that are effective enough to typ-
ically meet rough proportionality simultaneously
for both Latino and Black voters, while not sacrific-
ing districts to double-counting—i.e., while achiev-
ing near-proportionality for people of color overall
as well as for each group individually. A heuristic

optimization algorithm can preferentially accept
maps with higher minority effectiveness. We carried
this out with the general ‘‘short bursts’’ strategy out-
lined in Cannon et al. 2020; for details, see Supple-
mentary Appendix H.

To be clear: maps proposed for adoption should
be developed through human deliberation based
on significant community input and a broader
range of criteria and values than our algorithm in-
corporates. No map plucked from an ensemble is
likely to satisfy all human desiderata off the shelf.
But just to demonstrate that a map with eight
Latino-effective districts and four Black-effective
districts can be replaced by one with (at least) ten
and five such districts, respectively, we examine
one demonstration plan found in a local search.

7.2. A demonstration plan

Our demonstration plan is depicted in Figure 11,
and its effectiveness statistics by district are shown
in Table 6.

We emphasize that this map is not intended to be
an ideal map. But it does show that a carefully
drawn plan could be dramatically fairer for histori-
cally underrepresented minority groups in Texas.
We call it a ‘‘demonstration map’’ because it dem-
onstrates that the shortfall of minority representa-
tion in the status quo map can be cured. The
failure to do so can be attributed not to geography
or law, but only to line-drawing.

In Table 6, we have uncoupled the primary and
general elections, to give a more detailed view of
the electoral history of these districts. In other
words, this table shows the primary/runoff success
independent of the general-election outcome,
while our effectiveness-scoring system requires
wins in both the primary (or primary and runoff)
and the general, to be counted as a success. The
table shows that, using any of the three scores, the
demonstration plan contains at least 11, and perhaps
as many as 13, effective districts for Latino voters
and at least five, and perhaps as many as seven, ef-
fective districts for Black voters. Because one dis-
trict in the Dallas area (District 33) and at least
one in the Houston area (District 18) appear to be
effective for both Black and Latino voters, the
total number of minority-effective districts in the
demonstration plan is 14, 15, or 16, depending on
whether you rely on the unweighted, statewide, or
district scores, respectively. Only one of the 16 dis-
tricts is majority-white by CVAP.

Several of these 16 highlighted districts have de-
mographics and effectiveness scores similar to those
of the minority-effective districts in the current
enacted plan (compare Table 4). However, in the
current enacted plan, every district except Con-
gressman Veasey’s District 33 follows the rule that
districts marked effective for Latino voters have
HCVAP over 50% and those marked effective for
Black voters have BCVAP over 40%. By contrast,
the demonstration plan presented here features sev-
eral effective districts with lower Latino and Black
population percentages. For example, the Austin-
based District 27 is a Latino-effective district with
an HCVAP a shade under 40%, and the Houston-
based District 9 is a Black-effective district with a
BCVAP of only 28.6%. We emphasize that each
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of those demonstration districts earned its effective-
ness score by voting for the Latino- or Black-
preferred candidates, respectively, in nearly every
statewide election conducted in the last decade.

This map refutes the notion that demographics is
destiny when it comes to Texas congressional dis-

tricts. It contains districts that are majority-
minority but not minority-effective (District 2),
majority-white but Latino-effective (District 35),
plurality-white but Black-effective (Districts 9,
30, and 32) or Latino-effective (Districts 27 and
29), and plurality-Latino but Black-effective

FIG. 11. An interesting demonstration plan found by heuristic optimization.
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(the two coalition districts, 18 and 33). There are
also districts that are reliably Democratic but are
not effective for either Latino voters or Black vot-
ers (Districts 12 and 31).

Table 6 takes a single district and brings us back
to the most basic facts about it: whether the
minority-preferred candidates actually won the
most votes. We use as an example the plurality-
white but Latino-effective District 27, which starts
in East Austin and stretches south toward the Gulf

Coast. For 11 of the 14 offices, the candidate pre-
ferred by Latino voters statewide prevailed at every
step in District 27: primary, runoff (when there
was one), and general. In the 2014 general election,
however, the Latino-preferred Democratic nominee
David Alameel failed to carry District 27 against
Republican incumbent U.S. Senator John Cornyn;
and in the 2018 Democratic primaries for lieutenant
governor and comptroller, the candidates preferred
by Latino voters statewide (Michael Cooper and

Table 6. Statistics for Effective Districts in Demonstration Texas Congressional Plan

Demonstration Plan

CD Location
HCVAP

%

Latino effective
BCVAP

%

Black effective
WCVAP

%

14 Primaries

14 Gen (Dem.)sunw sstate sdist sunw sstate sdist Latino Black

7 Houston 36.5 77 65 77 25.5 70 58 31 31.4 9–13 9–10 14
9 Houston 23.3 40 30 33 28.6 78 66 75 31.5 10–12 10–12 14
15 South Texas 78.8 97 98 96 1.7 8 9 6 17.5 12–14 10–11 14
16 El Paso 76.1 99 99 97 4.2 11 12 10 17.4 13–14 11–14 14
18 Houston 32.0 66 59 63 30.7 76 77 69 30.4 10–13 10–12 14
20 San Antonio 60.6 77 82 76 5.5 10 11 9 30.9 12–14 12–13 9
21 San Antonio 47.5 35 74 79 5.6 8 8 8 42.9 12–14 10–14 7
23 San Antonio 51.1 77 82 79 10.7 14 15 14 34.7 12–14 10–12 9
27 Austin/Gulf Coast 39.8 84 85 85 8.8 17 16 18 47.7 12–13 10–14 13
28 South/West Texas 81.4 91 95 96 1.0 7 8 6 16.6 11–14 9–11 14
29 Houston 33.4 70 57 75 25.5 70 58 52 35.5 9–11 9–12 14
30 DFW 15.5 20 15 13 31.8 85 84 69 48.5 9–10 10–11 14
32 DFW 24.1 24 26 28 24.4 52 67 62 44.9 10–13 12–14 10
33 DFW 37.0 85 80 66 32.9 96 97 88 25.1 10–11 13 14
34 South Texas 86.7 97 98 97 0.4 6 7 5 12.3 11–14 9–11 14
35 Austin 30.7 62 62 67 4.8 10 10 9 60.6 11–13 9–10 14

District 27 (with statewide candidates of choice)

Primary election Primary runoff election General election

Latino-pref. Winner Latino-pref. Winner Latino-pref. Winner

President 2012 Obama Obama X Obama Obama X
U.S. Senator 2012 Sadler Sadler X Sadler Sadler X Sadler Sadler X
U.S. Senator 2014 Alameel Alameel X Alameel Alameel X Alameel Cornyn ·
Governor 2014 Davis Davis X Davis Davis X
Ag. Commissioner 2014 Friedman Friedman X Hogan Hogan X Hogan Hogan X
RR Commissioner 2014 Brown Brown X Brown Brown X
President 2016 Clinton Clinton X Clinton Clinton X
RR Commissioner 2016 Yarbrough Yarbrough X Yarbrough Yarbrough X Yarbrough Yarbrough X
U.S. Senator 2018 O’Rourke O’Rourke X O’Rourke O’Rourke X
Governor 2018 Valdez Valdez X Valdez Valdez X Valdez Valdez X
Lieutenant Governor 2018 Cooper Collier · Collier Collier X
Comptroller 2018 Mahoney Chevalier · Chevalier Chevalier X
Land Commissioner 2018 Suazo Suazo X Suazo Suazo X
RR Commissioner 2018 McAllen McAllen X McAllen McAllen X

The demonstration plan has up to 16 minority-effective districts, as shown in the top table, while the enacted plan has no more than 11 to 13 (com-
pare Table 4 and accompanying text). Scores over 60% have darker shading, and scores in the 50–60% range have lighter shading. The frequency of
primary and general election wins by minority-preferred candidates is shown in the last two columns. Because different candidates of choice can be
identified by the statewide and district-specific method, the number of successes is given as a range. The bottom table shows that candidates pre-
ferred by Latino voters statewide prevailed in District 27 in 12 of the 14 primaries, 5 of the 5 runoffs, and 13 of the 14 general elections. (With the
candidates of choice inferred from the district-specific method, there are 13 primary successes).
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Tim Mahoney, respectively) failed to carry the dis-
trict. This district generated Latino-effectiveness
scores of about 84 or 85%, far above our threshold
for effectiveness (60%) but below the scores for
the map’s four most heavily Latino districts, which
consistently exceeded 90%.

7.3. Aggregate effectiveness

The use of a search technique tailored to raise the
number of minority-effective districts might lead us
to wonder about the effect on the rest of the
map. With respect to demographics alone, redis-
tricting is a fixed-sum activity: there are only so
many Latino citizens of voting age in the state, so
building more districts with high HCVAP means
there is less remaining HCVAP to distribute across
the other districts. We might worry that we can
only secure a larger number of effective districts
by draining opportunities for coalitional influence
from the rest of the state. But this is not the case.

Because of the highly nonlinear relationship be-
tween demographics and effectiveness (see section
6), it is possible to create some plans with a greater
overall effectiveness than others.

To see this, let us consider the sum of the effec-
tiveness scores for all 36 Texas congressional dis-
tricts. Because each district has a score between 0
and 1, the sum will fall between 0 and 36. To the ex-
tent that a group’s effectiveness scores behave like
probabilities of electoral success, the sum over the
36 districts can be regarded as the expected value

for the group in a given election. This expected-
value score takes into account the probability but
not certainty of electoral success in the effective dis-
tricts, and also includes contributions from other
districts in which an effectiveness score could fall
well below .5 yet still reflect real political influence
and a chance to win.

The enacted plan has an expected-value score
a bit under 12, driven by 11 highly effective dis-
tricts. After a few thousand steps of a heuristic-

FIG. 12. This trace plot shows a kind of aggregate effectiveness for Latino and Black voters, formed by summing Latino and/or
Black effectiveness scores over all 36 districts. This aggregate effectiveness trends up markedly over the course of a heuristic-
optimization run that preferentially accepts plans with more districts effective for at least one minority group under the sstate

score. This drives up the sstate score (in blue) most, with the other two scores following behind. (See Supplementary Appendix
H for details on related optimization runs.)
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optimization run (shown in Figure 12), the
expected-value score is well over 15, usually
over 16, and it is possible to drive the expectation
up near 18 in the score being optimized. Our dem-
onstration plan has an expectation of nearly 17,
which tracks with the 16 districts highlighted in
Table 6.

We find that, with respect to electoral opportu-
nity, districting is not a fixed-sum game. We can
find plans that combine Latino and Black voters
with other population (including Asian American
and white voters who tend to support the same can-
didates) in ways that lead to effective combinations.
We can create safe minority districts, likely-to-elect
minority districts, and some minority influence dis-
tricts in a way that is especially beneficial in aggre-
gate. This is a departure from the narrower focus on
effectiveness that is directly relevant for VRA com-
pliance, but may still point the way to a more coali-
tional expansion of minority opportunities beyond
the demands of the law.

8. CONCLUSION

The principal goal of this project is the design
and study of a protocol for building ensembles of al-
ternative districting plans, taking closely into ac-
count the law of race and redistricting. We do this
by using longitudinal electoral data, one of a choice
of effectiveness scores, and a constrained district-
generation algorithm.

No inclusion criterion assessed by a computer
could perfectly track the conclusions of a court
(not least because of variation in the judiciary
itself), but ours is constructed to give us strong jus-
tification for describing it as a representative sam-

ple of the universe of VRA-compliant plans. We
have pursued this objective in a way that also avoids
overreliance on purely demographic targets that
might run afoul of the Equal Protection Clause.

The structure of our protocol is described in sec-
tion 4, and a detailed case study for Texas congres-
sional districts is detailed in section 5. In section 6
we confirm that the role played by the extensive
electoral data is not easily replaced by simpler prox-
ies. And in section 7 we explore the use of similar
techniques to minimize underrepresentation for mi-
nority groups—showing in particular that pushing
to find plans that go the farthest to cure long-
standing underrepresentation is a markedly different

task from creating collections of alternatives that
pass VRA muster. Studying the conditions of polit-
ical and human geography that make it possible to
attain near-proportionality is an interesting direc-
tion for future work.

With a detailed case study in the large, complex
state of Texas, we confirm that our implementation
lets us carry out the work on a time scale suitable for
all stages of redistricting, from considering plans for
possible adoption all the way to challenging them in
litigation. We have made careful use of error estima-
tes, performed tests of quality for ensemble genera-
tion, and confirmed robustness of the method across
reasonable variations in the steps. By making our
code and data public (MGGG Redistricting Lab,
2020a), we aim to make it possible for other re-
searchers and practitioners to use this method on
the ground.

This tool now makes it possible to assess pro-
posed districting plans in racially diverse states
against a baseline that takes the Voting Rights Act
and the Equal Protection Clause into account. The
computational tools for redistricting are continually
becoming both more powerful and more refined, fa-
cilitating the creation of new maps that better meet
our ideals of fairness and helping to understand
maps in the context of realistic alternatives. By
using novel tools in combination with renewed
commitment to safeguarding minority representa-
tion, we can come closer than ever to the goal artic-
ulated by John Adams almost 250 years ago, in the
midst of the American Revolution: to make our rep-
resentative assemblies ‘‘in miniature an exact por-
trait of the people at large’’ (Adams, 1776, 108).
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DeFord, Daryl, Moon Duchin, and Justin Solomon. 2021.
‘‘Recombination: A Family of Markov Chains for Redis-
tricting.’’ Harvard Data Science Review 3(1). <https://
doi.org/10.1162/99608f92.eb30390f>.

Duchin, Moon, and Bridget Tenner. 2018. ‘‘Discrete Geometry
for Electoral Geography.’’ arXiv.org. <https://arxiv.org/abs/
1808.05860>.

Duchin, Moon and Douglas M. Spencer. 2021. ‘‘Models, Race,
and the Law: A Response to ‘The Race-Blind Future of Vot-
ing Rights.’’’ Yale Law Journal Forum 130:744–97.

Elmendorf, Christopher S., Kevin M. Quinn, and Marisa J.
Abrajano. 2016. ‘‘Racially Polarized Voting.’’ University

of Chicago Law Review 83(2): 587–692.
Fifield, Benjamin, Michael Higgins, Kosuke Imai, and

Alexander Tarr. 2020. ‘‘Automated Redistricting Simula-
tion Using Markov Chain Monte Carlo.’’ Journal of Com-

putational and Graphical Statistics 29(4): 715–728. DOI:
10.1080/10618600.2020.1739532.

Grofman, Bernard, Lisa Handley, and David Lublin. 2001.
‘‘Drawing Effective Minority Districts: A Conceptual
Framework and Some Empirical Evidence.’’ North Caro-

lina Law Review 79(5):1383–430.
Hebert, J. Gerald, Paul M. Smith, Martina E. Vandenberg, and

Michael B. DeSanctis. 2010. The Realist’s Guide to Redis-

tricting: Avoiding the Legal Pitfalls, 2d edition. Chicago,
IL: ABA.

Herschlag, Gregory, Han Sung Kang, Justin Luo, Christy
Vaughn Graves, Sachet Bangia, Robert Ravier, and Jona-
than C. Mattingly. 2020. ‘‘Quantifying Gerrymandering
in North Carolina.’’ Statistics and Public Policy 7(1):
30–38.

History, Art, and Archives, U.S. House of Representatives,
Office of the Historian. 2020a. ‘‘Black-American Members
by Congress, 1870–Present.’’ History, Art & Archives.
Available at <https://history.house.gov/Exhibitions-and-
Publications/BAIC/Historical-Data/Black-American-Repre
sentatives-and-Senators-by-Congress/>.

History, Art, and Archives, U.S. House of Representatives,
Office of the Historian. 2020b. ‘‘Hispanic-American Repre-
sentatives, Senators, Delegates, and Resident Commissioners
by Congress, 1822–Present.’’ History, Art & Archives.
Available at <https://history.house.gov/Exhibitions-and-
Publications/HAIC/Historical-Data/Hispanic-American-
Representatives,-Senators,-Delegates,-and-Resident-
Commissioners-by-Congress/>.

Iowa Code x 42.4.4. N.d.
Iowa Const. art. III, x 37. N.d.
Johnson v. De Grandy. 1994. 512 U.S. 997.
Karcher v. Daggett. 1983. 462 U.S. 725.
King, Gary. 1997. A Solution to the Ecological Inference Prob-

lem: Reconstructing Individual Behavior from Aggregate

Data. Princeton, NJ: Princeton University Press.
King, Gary, Ori Rosen, and Martin A. Tanner. 1999. ‘‘Binomial-

Beta Hierarchical Models for Ecological Inference.’’ Socio-

logical Methods and Research 28(1): 61–90.
Lau, Olivia, Ryan T. Moore, and Michael Kellermann. 2020.

‘‘eiPack: Ecological Inference and Higher-Dimension
Data Management (R package).’’ Version 0.2-1. Available
at <https://CRAN.R-project.org/package=eiPack>.

League of Women Voters of Mich. v. Benson. 2019. 373 F.
Supp. 3d 867 (E.D. Mich.) (three- judge court), summarily
vacated and remanded sub nom. Chatfield v. League of
Women Voters of Mich., 140 S. Ct. 429.

League of Women Voters v. Commonwealth. 2018. 178 A.3d
737 (Pa.).

LULAC v. Perry. 2006. 548 U.S. 399.
McCartan, Cory and Kosuke Imai. 2021. ‘‘Sequential Monte

Carlo for Sampling Balanced and Compact Redistricting
Plans.’’ arXiv.org. <https://arxiv.org/abs/2008.06131>.

MGGG Redistricting Lab. 2018a. ‘‘Comparison of Districting
Plans for the Virginia House of Delegates.’’ White Paper.
<https://mggg.org/VA-report.pdf>.

MGGG Redistricting Lab. 2018b. ‘‘GerryChain Python pack-
age.’’ GitHub repository. <https://github.com/mggg/
GerryChain>.

MGGG Redistricting Lab. 2018c. ‘‘MAUP Python package.’’
GitHub repository. <https://github.com/mggg/MAUP>.

440 BECKER ET AL.

https://www.pewresearch.org/fact-tank/2019/02/08/for-the-fifth-time-in-a-row-the-new-congress-is-the-most-racially-and-ethnically-diverse-ever/
https://www.pewresearch.org/fact-tank/2019/02/08/for-the-fifth-time-in-a-row-the-new-congress-is-the-most-racially-and-ethnically-diverse-ever/
https://www.pewresearch.org/fact-tank/2019/02/08/for-the-fifth-time-in-a-row-the-new-congress-is-the-most-racially-and-ethnically-diverse-ever/
https://www.pewresearch.org/fact-tank/2019/02/08/for-the-fifth-time-in-a-row-the-new-congress-is-the-most-racially-and-ethnically-diverse-ever/
https://projects.fivethirtyeight.com/redistricting-maps/
https://projects.fivethirtyeight.com/redistricting-maps/
https://arxiv.org/abs/2011.02288
https://doi.org/10.1162/99608f92.eb30390f
https://doi.org/10.1162/99608f92.eb30390f
https://arxiv.org/abs/1808.05860
https://arxiv.org/abs/1808.05860
https://history.house.gov/Exhibitions-and-Publications/BAIC/Historical-Data/Black-American-Representatives-and-Senators-by-Congress/
https://history.house.gov/Exhibitions-and-Publications/BAIC/Historical-Data/Black-American-Representatives-and-Senators-by-Congress/
https://history.house.gov/Exhibitions-and-Publications/BAIC/Historical-Data/Black-American-Representatives-and-Senators-by-Congress/
https://history.house.gov/Exhibitions-and-Publications/HAIC/Historical-Data/Hispanic-American-Representatives,-Senators,-Delegates,-and-Resident-Commissioners-by-Congress/
https://history.house.gov/Exhibitions-and-Publications/HAIC/Historical-Data/Hispanic-American-Representatives,-Senators,-Delegates,-and-Resident-Commissioners-by-Congress/
https://history.house.gov/Exhibitions-and-Publications/HAIC/Historical-Data/Hispanic-American-Representatives,-Senators,-Delegates,-and-Resident-Commissioners-by-Congress/
https://history.house.gov/Exhibitions-and-Publications/HAIC/Historical-Data/Hispanic-American-Representatives,-Senators,-Delegates,-and-Resident-Commissioners-by-Congress/
https://CRAN.R-project.org/package=eiPack
https://arxiv.org/abs/2008.06131
https://mggg.org/VA-report.pdf
https://github.com/mggg/GerryChain
https://github.com/mggg/GerryChain
https://github.com/mggg/MAUP


MGGG Redistricting Lab. 2018d. ‘‘Study of Voting Systems for
Santa Clara, CA.’’ White Paper. <https://mggg.org/
santaclara>.

MGGG Redistricting Lab. 2019a. ‘‘Findings on the City of
Lowell’s Election Systems.’’ White Paper. <https://
mggg.org/lowell>.

MGGG Redistricting Lab. 2019b. ‘‘Study of Reform Proposals
for Chicago City Council.’’ GitHub repository. <https://
mggg.org/chicago>.

MGGG Redistricting Lab. 2020a. ‘‘Computational VRA.’’ GitHub
repository. <https://github.com/mggg/VRA_ensembles>.

MGGG Redistricting Lab. 2020b. ‘‘GerryChainJulia Julia pack-
age.’’ GitHub repository. <https://github.com/mggg/
GerryChainJulia>.

Miller v. Johnson. 1995. 515 U.S. 900.
National Conference of State Legislatures. 2020. ‘‘State

Legislator Demographics.’’ NSCL.org. <https://www
.ncsl.org/research/about-state-legislatures/state-legislator-
demographics.aspx>.

Ohio A. Philip Randolph Institute v. Householder. 2019. 373 F.
Supp. 3d 978 (S.D. Ohio) (three- judge court), summarily
vacated and remanded, 140 S. Ct. 101.

Rucho v. Common Cause. 2019. 139 S. Ct. 2484.
Session v. Perry. 2004. 298 F. Supp. 2d 451 (E.D. Tex.) (three-

judge court) (per curiam), vacated and remanded on other
grounds sub nom. Jackson v. Perry, 543 U.S. 941.

Shaw v. Reno. 1993. 509 U.S. 630.
Smith v. Clinton. 1988. 687 F. Supp. 1310 (E.D. Ark.) (three-

judge court), summarily aff’d, 488 U.S. 988.
Tennant v. Jefferson County Comm’n. 2012. 567 U.S. 758 (per

curiam).

Texas Legislative Council. 2020. ‘‘Capitol Data Portal.’’ Avail-
able at <https://data.capitol.texas.gov>.

Thornburg v. Gingles. 1986. 478 U.S. 30.
Unger v. Manchin. 2002. 536 U.S. 935.
U.S. Bureau of the Census. 2019a. ‘‘American Community

Survey: Citizen Voting-Age Population, by Selected Char-
acteristics.’’ <https://data.census.gov/cedsci/table?q=S2901
&tid=ACSST1Y2019.S2901>.

U.S. Bureau of the Census. 2019b. ‘‘American Community Sur-
vey: Citizen Voting-Age Population, by State.’’ <https://
www.census.gov/library/visualizations/2016/comm/citizen_
voting_age_population.html>.

U.S. Const. amend. XIV. N.d.
Voinovich v. Quilter. 1993. 507 U.S. 146.
VRA. 2020. 52 U.S.C. x 10301 et seq.

Address correspondence to:
Sam Hirsch

Jenner & Block LLP

1099 New York Avenue NW

Washington, DC 20001

USA

E-mail: shirsch@jenner.com

Received for publication November 24, 2020; re-
ceived in revised form July 11, 2021; accepted
July 19, 2021; published online October 18, 2021.

COMPUTATIONAL REDISTRICTING AND THE VRA 441

https://mggg.org/santaclara
https://mggg.org/santaclara
https://mggg.org/lowell
https://mggg.org/lowell
https://mggg.org/chicago
https://mggg.org/chicago
https://github.com/mggg/VRA_ensembles
https://github.com/mggg/GerryChainJulia
https://github.com/mggg/GerryChainJulia
https://www.ncsl.org/research/about-state-legislatures/state-legislator-demographics.aspx
https://www.ncsl.org/research/about-state-legislatures/state-legislator-demographics.aspx
https://www.ncsl.org/research/about-state-legislatures/state-legislator-demographics.aspx
https://data.capitol.texas.gov
https://data.census.gov/cedsci/table?q=S2901&tid=ACSST1Y2019.S2901
https://data.census.gov/cedsci/table?q=S2901&tid=ACSST1Y2019.S2901
https://www.census.gov/library/visualizations/2016/comm/citizen_voting_age_population.html
https://www.census.gov/library/visualizations/2016/comm/citizen_voting_age_population.html
https://www.census.gov/library/visualizations/2016/comm/citizen_voting_age_population.html

